Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fouling behavior of microstructured hollow fiber membranes in submerged and aerated filtrations
Date
2011-02-01
Author
Çulfaz Emecen, Pınar Zeynep
Lammertink, R.G.H.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
157
views
0
downloads
Cite This
The performance of microstructured hollow fiber membranes in submerged and aerated systems was investigated using colloidal silica as a model foulant. The microstructured fibers were compared to round fibers and to twisted microstructured fibers in flux-stepping experiments. The fouling resistances in the structured fibers were found to be higher than those of round fibers. This was attributed to stagnant zones in the grooves of the structured fibers. As the bubble sizes were larger than the size of the grooves of the structured fibers, it is possible that neither the bubbles nor the secondary flow caused by the bubbles can reach the bottom parts of the grooves. Twisting the structured fibers around their axes resulted in decreased fouling resistances. Large, cap-shaped bubbles and slugs were found to be the most effective in fouling removal, while small bubbles of sizes similar to the convolutions in the structured fiber did not cause an improvement in these fibers. Modules in a vertical orientation performed better than horizontal modules when coarse bubbling was used. For small bubbles, the difference between vertical and horizontal modules was not significant. When the structured and twisted fibers were compared to round fibers with respect to the permeate flowrate produced per fiber length instead of the actual flux through the convoluted membrane area, they showed lower fouling resistance than round fibers. This is because the enhancement in surface area is more than the increase in resistance caused by stagnant zones in the grooves of the structured fibers. From a practical point of view, although the microstructure does not promote further turbulence in submerged and aerated systems, it can still be possible to enhance productivity per module with the microstructured fibers due to their high surface area-to-volume ratio.
Subject Keywords
Bubble flow
,
Concentration polarization
,
Fouling
,
MBR
,
Microstructured membrane
URI
https://hdl.handle.net/11511/35914
Journal
Water Research
DOI
https://doi.org/10.1016/j.watres.2010.12.007
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition
Çulfaz Emecen, Pınar Zeynep; Wessling, M.; Lammertink, R.G.H. (Elsevier BV, 2011-04-15)
The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared to round fibers. In silica filtrations, the three different fibers showed similar behavior and increasing Reynolds number increased the critical fluxes significantly. In yeast filtrations, the twisted fiber perfo...
Fouling behavior of microstructured hollow fiber membranes in dead-end filtrations: Critical flux determination and NMR imaging of particle deposition
Çulfaz Emecen, Pınar Zeynep; Utiu, Lavinia; Kueppers, Markus; Bluemich, Bernhard; Melin, Thomas; Wessling, Matthias; Lammertink, Rob G. H. (2011-03-01)
The fouling behavior of microstructured hollow fibers was investigated in constant flux filtrations of colloidal silica and sodium alginate. It was observed that the fouling resistance increases faster with structured fibers than with round fibers. Reversibility of structured fibers' fouling was similar during silica filtrations and better in sodium alginate filtrations when compared with round fibers. The deposition of two different silica sols on the membranes was observed by NMR imaging. The sols had dif...
Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors
Kanbur, Yasin; Irimia-Vladu, Mihai; Glowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Guenther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; ERTEN ELA, ŞULE; Schwoediauer, Reinhard; Sitter, Helmut; Kucukyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar (2012-05-01)
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C-60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm(2)/Vs. Devices with pentacene showed a mobility of 0.16 cm(2)/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of similar to...
Tamoxifen-model membrane interactions: An FT-IR study
Boyar, H; Severcan, Feride (1997-06-01)
The temperature- and concentration-induced effects of tamoxifen (TAM) on dipalmitoyl phosphatidylcholine (DPPC) model membranes were investigated by the Fourier transform-infrared (FT IR) spectroscopic technique. An investigation of the C-H stretching region and the C=0 mode reveals that the inclusion of TAM changes the physical properties of the DPPC multibilayers by (i) shifting the main phase transition to lower temperatures; (ii) broadening the transition profile slightly; (iii) disordering the system i...
Electro-chemo-mechanical induced fracture modeling in proton exchange membrane water electrolysis for sustainable hydrogen production
Aldakheel, Fadi; Kandekar, Chaitanya; Bensmann, Boris; Dal, Hüsnü; Hanke-Rauschenbach, Richard (2022-10-01)
This work provides a framework for predicting fracture of catalyst coated membrane (CCM) due to coupled electro-chemo-mechanical degradation processes in proton exchange membrane water electrolysis (PEMWE) cells. Electrolysis in the catalyst layer (CL) bulk, diffusion of Hydrogen proton through the membrane (MEM), and mechanical compression at the interface with the porous transport layer (PTL) generate micro-cracks that influence the catalyst degradation. Based on our experimental observations, we propose ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Z. Çulfaz Emecen and R. G. H. Lammertink, “Fouling behavior of microstructured hollow fiber membranes in submerged and aerated filtrations,”
Water Research
, pp. 1865–1871, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35914.