Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing

Gundogdu, Erhan
Özkan, Huseyin
Alatan, Abdullah Aydın
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [ of complexity O(D)] based on a large ensemble of CFB trackers. The ensemble [ of size O(2(D))] is organized over a binary tree (depth D), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.


Good Features to Correlate for Visual Tracking
Gundogdu, Erhan; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2018-05-01)
During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in this family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize the robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learni...
Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution
Ferreira, Julio Cesar; Vural, Elif; Guillemot, Christine (Institute of Electrical and Electronics Engineers (IEEE), 2016-03-01)
Local learning of sparse image models has proved to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good...
Fuzzy spatial data cube construction and its use in association rule mining
Işık, Narin; Yazıcı, Adnan; Department of Computer Engineering (2005)
The popularity of spatial databases increases since the amount of the spatial data that need to be handled has increased by the use of digital maps, images from satellites, video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to examine and extract interesting knowledge; hence, applications that assist decision-making about spatial data like weather forecasting, traffic supervision, mobile communication, etc. have been introduced. In this thesis, more natural and precise knowle...
Improving interactive classification of satellite image content
Tekkaya, Gökhan; Atalay, Mehmet Volkan; Department of Computer Engineering (2007)
Interactive classication is an attractive alternative and complementary for automatic classication of satellite image content, since the subject is visual and there are not yet powerful computational features corresponding to the sought visual features. In this study, we improve our previous attempt by building a more stable software system with better capabilities for interactive classication of the content of satellite images. The system allows user to indicate a few number of image regions that contain a...
Farhoodi, Roshanak; Garousi, Vahid; Pfahl, Dietmar; Sillito, Jonathan (World Scientific Pub Co Pte Lt, 2013-05-01)
Scientific and engineering research is heavily dependent on effective development and use of software artifacts. Many of these artifacts are produced by the scientists themselves, rather than by trained software engineers. To address the challenges in this area, a research community often referred to as "Development of Scientific Software" has emerged in the last few decades. As this research area has matured, there has been a sharp increase in the number of papers and results made available, and it has thu...
Citation Formats
E. Gundogdu, H. Özkan, and A. A. Alatan, “Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing,” IEEE TRANSACTIONS ON IMAGE PROCESSING, pp. 5270–5283, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35932.