Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output
Date
2012-06-01
Author
Rahimi, Arian
Zorlu, Ozge
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
154
views
0
downloads
Cite This
This paper presents a vibration-based energy harvesting system composed of a compact electromagnetic (EM) power generator and highly efficient full-wave interface electronics in a system-on-package. The system harvests energy from ambient vibrations, and delivers a smooth and reliable dual rail DC supply to power up a practical load. The energy harvester module is an in-house double-coil EM transducer which generates AC voltage in response to low frequency ambient vibrations. Voltage regulation is achieved by the interface electronics at the core of the system, which is designed to rectify the input AC voltage with peak amplitude ranging from several hundred mVs to several Volts, with maximum efficiency. The interface electronics contains an active rectifier with high conversion efficiency (>80%) for a wide range of load currents (0-42 mu A). A passive network, built from low threshold-voltage chip diodes and capacitors, generates a dual supply voltage from one of the coils to power up the active rectifier. The autonomous system of 16 cm(3) volume (comparable to the size of a C-Type battery), delivers 54 mu W to a 37-mu A load through a dual rail 1.46 V DC voltage with total system efficiency of 81%, when subjected to low frequency (8 Hz) external vibrations. The maximum overall system power density has been validated to be 6.06 mu W/cm(3), three times what was previously reported for a batteryless vibration driven system.
Subject Keywords
Electromagnetic power generation
,
High efficiency rectification
,
Low power active rectifier
,
Vibration-based energy harvester
URI
https://hdl.handle.net/11511/35933
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2011.2177967
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2017-07-01)
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring osc...
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
A 180 nm Self-Powered Rectifier Circuit for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2013-12-18)
This paper presents a new self-powered low voltage rectifier implementation for vibration-based electromagnetic (EM) energy harvesters. The proposed circuit is an improved version of the previously reported rectifier, which was designed in TSMC 90 nm CMOS technology. The circuit is designed in lower cost UMC 180 nm CMOS technology, and uses a passive AC/DC quadrupler structure to supply the external power of the utilized active components. Simulation results show that the maximum power conversion efficiency...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Rahimi, O. Zorlu, A. Muhtaroglu, and H. Külah, “Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output,”
IEEE SENSORS JOURNAL
, pp. 2287–2298, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35933.