Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input

2017-07-01
Ulusan, Hasan
Zorlu, Ozge
Muhtaroglu, Ali
Külah, Haluk
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring oscillator. The output is finally regulated to 3 V at the last stage. The voltage doubling rectification stage deviates by less than 40 mV from ideal expectation for the validated 0.15-1 V input voltage range. The full system delivers 3 V output to 4.4 M Omega load for input voltage of 0.4 V-peak, which is the lowest operable input voltage in the literature. The demonstrated system generates 9 mu W of dc power with 3 V stable output for 32 mu W input, whereas the circuit is able to supply even more output power for higher input power levels. The maximum efficiency of the rectification stage is 86%, while the full system efficiency is 37% and 28% for unregulated and regulated operation, respectively, when interfaced to an in-house electromagnetic energy harvester under 8 Hz 0.1 g vibration.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Suggestions

A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
A Fully Integrated and Battery-Free Interface for Low-Voltage Electromagnetic Energy Harvesters
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2015-07-01)
This paper presents a fully integrated and battery-free 90 nm interface circuit for ac/dc conversion and step up of low-voltage ac signals generated by electromagnetic (EM) energy harvesters. The circuit is composed of two stages: The rectifier in the first stage utilizes an improved ac/dc doubler structure with active diodes internally powered by a passive ac/dc doubler and custom-designed comparators to minimize the voltage drops. With this, the efficiency is enhanced to 67% while providing 0.61 V to 40 m...
Fully Self-Powered Electromagnetic Energy Harvesting System With Highly Efficient Dual Rail Output
Rahimi, Arian; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-06-01)
This paper presents a vibration-based energy harvesting system composed of a compact electromagnetic (EM) power generator and highly efficient full-wave interface electronics in a system-on-package. The system harvests energy from ambient vibrations, and delivers a smooth and reliable dual rail DC supply to power up a practical load. The energy harvester module is an in-house double-coil EM transducer which generates AC voltage in response to low frequency ambient vibrations. Voltage regulation is achieved ...
Active clamped ZVS forward converter with soft-switched synchronous rectifier for maximum efficiency operation
Acik, A; Cadirci, I (1998-05-22)
An active-clamped, zero-voltage switched forward converter equipped with a soft-switched synchronous rectifier is designed and implemented for some low output voltage applications where maximized efficiency is of utmost importance. The converter efficiency is maximized due to soft-switching of the main, active clamp and the synchronous rectifier MOSFET switches. Experimental results are presented for a converter with a de input voltage of 48V, an output voltage of 5V and a de electronic load up to 10A. The ...
Citation Formats
H. Ulusan, O. Zorlu, A. Muhtaroglu, and H. Külah, “Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, pp. 5460–5467, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46618.