Abstraction-based supervisory control for recon-gurable manufacturing systems ?

Khalid, Harith M.
Kirik, Mustafa Sancay
Schmidt, Klaus Verner
Reconfiguration control for discrete event systems (DES) is concerned with the realization of different system configurations by modification of the supervisory control loop. In this paper, we study the reconfiguration supervisor design for reconfigurable manufacturing systems (RMS) that comprise multiple components. We construct a modular supervisor for each configuration and system component in order to realize each active configuration and to quickly change between configurations. Different from the existing literature that is focused on monolithic design, our method is abstraction-based, and, hence applicable to large-scale DES.


Efficient Abstractions for the Supervisory Control of Modular Discrete Event Systems
Schmidt, Klaus Verner (2012-12-01)
The topic of this technical note is the nonblocking and maximally permissive abstraction-based supervisory control for modular discrete event systems (DES). It is shown, that an efficient abstraction technique, that was developed for the nonconflict verification of modular DES, is also suitable for the nonblocking supervisory control. Moreover, it is proved that this abstraction technique can be extended by the condition of local control consistency, in order to achieve maximally permissive supervision. Dif...
Fuzzy Hybrid Systems modeling with application in decision making and control
Boutalis, Yiannis; Moor, Thomas; Schmidt, Klaus Verner (2012-11-28)
Hybrid Systems are systems containing both discrete event and continuous variable components. Many recent contributions address crisp situations, where ambiguity or subjectivity in the measured data is absent. In this paper, we propose Fuzzy Hybrid Systems to account for inaccurate measurements and uncertain dynamics. We present a strategy to determine the most appropriate control actions in a sampled data setting. The proposed approach is based on three basic steps that are performed in each sampling perio...
Hierarchical multitasking control of discrete event systems: Computation of projections and maximal permissiveness
Schmidt, Klaus Verner; Cury, José E.r. (null; 2010-12-01)
This paper extends previous results on the hierarchical and decentralized control of multitasking discrete event systems (MTDES). Colored observers, a generalization of the observer property, together with local control consistency, allow to derive sufficient conditions for synthesizing modular and hierarchical control that are both strongly nonblocking (SNB) and maximally permissive. A polynomial procedure to verify if a projection fulfills the above properties is proposed and in the case they fail for a g...
Fault-tolerant control of discrete-event systems with lower-bound specifications
Moor, Thomas; Schmidt, Klaus Verner (2015-06-01)
Fault-tolerant control addresses the control of dynamical systems such that they remain functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closedloop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control architecture, a combination of both options appears to be advisable: on each individual level of the hierarchy, t...
Nonblocking hierarchical control of decentralized des
Schmidt, Klaus Verner; Moor, Thomas (null; 2005-12-01)
This work considers a hierarchical control architecture for a class of discrete event systems which can also be applied to decentralized control systems. It is shown that nonblocking supervisory control on the high level of the hierarchy results in nonblocking and hierarchically consistent control on the low level. Copyright © 2005 IFAC.
Citation Formats
H. M. Khalid, M. S. Kirik, and K. V. Schmidt, “Abstraction-based supervisory control for recon-gurable manufacturing systems ?,” 2013, vol. 4, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35950.