Hide/Show Apps

Solving the area coverage problem with UAVs: A vehicle routing with time windows variation

Semiz, Fatih
Polat, Faruk
In real life, providing security for a set of large areas by covering the area with Unmanned Aerial Vehicles (UAVs) is a difficult problem that consist of multiple objectives. These difficulties are even greater if the area coverage must continue throughout a specific time window. We address this by considering a Vehicle Routing Problem with Time Windows (VRPTW) variation in which capacity of agents is one and each customer (target area) must be supplied with more than one vehicles simultaneously without violating time windows. In this problem, our aim is to find a way to cover all areas with the necessary number of UAVs during the time windows, minimize the total distance traveled, and provide a fast solution by satisfying the additional constraint that each agent has limited fuel. We present a novel algorithm that relies on clustering the target areas according to their time windows, and then incrementally generating transportation problems with each cluster and the ready UAVs. Then we solve transportation problems with the simplex algorithm to generate the solution. The performance of the proposed algorithm and other implemented algorithms to compare the solution quality is evaluated on example scenarios with practical problem sizes.