Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of Microfiber Reinforcement on the Morphology, Electrical, and Mechanical Properties of the Polyethylene/Poly(ethylene terephthalate)/Carbon Nanotube Composites
Date
2010-11-01
Author
Yesil, Sertan
Koysuren, Ozcan
Bayram, Göknur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
256
views
0
downloads
Cite This
In situ microfiber reinforced conductive polymer composites consisting of high-density polyethylene (HDPE), poly(ethylene terephthalate) (PET), and multiwalled carbon nanotube (CNT) were prepared in a twin screw extruder followed by hot stretching of PET/CNT phase in HDPE matrix. For comparison purposes, the HDPE/PET blends and HDPE/PET/CNT composites were also produced without hot stretching. Extrusion process parameters, hot-stretching speed, and CNT amount in the composites were kept constant during the experiments. Effects of PET content and molding temperature on the morphology, electrical, and mechanical properties of the composites were investigated. Morphological observations showed that PET/CNT microfibers were successfully formed in HDPE phase. Electrical conductivities of the microfibrillar composites were in semi-conductor range at 0.5 wt% CNT content. Microfiber reinforcement improved the tensile strength of the microfibrillar HDPE/PET/CNT composites in comparison to that of HDPE/PET blends and HDPE/PET/CNT composites prepared without hot stretching POLYM. ENG. SCI., 50:2093-2105, 2010. (C) 2010 Society of Plastics Engineers
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
URI
https://hdl.handle.net/11511/36006
Journal
POLYMER ENGINEERING AND SCIENCE
DOI
https://doi.org/10.1002/pen.21740
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Effect of Solid State Grinding on Properties of PP/PET Blends and Their Composites with Carbon Nanotubes
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur (Wiley, 2010-12-05)
In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at...
Effect of Boron Phosphate on the Mechanical, Thermal and Fire Retardant Properties of Polypropylene and Polyamide-6 Fibers
DOĞAN, Mehmet; Bayramlı, Erdal (Springer Science and Business Media LLC, 2013-10-01)
The effect of boron phosphate (BPO4) nanoparticles on the mechanical, thermal, and flame retardant properties of polypropylene (PP) and polyamide 6 (PA-6) fibers are investigated by tensile testing, thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), and micro combustion calorimeter (MCC). The addition of BPO4 reduces the mechanical properties of the both PP and PA-6 fibers. According to the TGA results, the addition of BPO4 does not change the thermal behavior of PP fiber and slightl...
Studies on the modification of interphase/interfaces by use of plasma in certain polymer composite systems
Akovali, G; Dilsiz, N (Wiley, 1996-04-01)
Calcium carbonate and carbon fiber surfaces were modified by use of a series of plasma polymers at different selected plasma conditions, and the effect of surface modification, mainly on the mechanical properties of composite systems prepared, was investigated. The matrices for the composite systems employed were polypropylene and epoxy, for the chalk and C fiber, respectively. Mechanical and thermal studies and scanning electron microscopy (SEM) pictures revealed that inclusion surfaces, being independent ...
Effect of a carbon black surface treatment on the microwave properties of poly(ethylene terephthalate)/carbon black composites
Koysuren, Ozcan; Yesil, Sertan; Bayram, Göknur; Secmen, Mustafa; Aydın Çivi, Hatice Özlem (Wiley, 2008-07-05)
A surface treatment was applied to carbon black to improve the electrical and microwave properties of poly(ethylene terephthalate) (PET)-based composites. Three different formamide solutions with 1, 2, and 3 wt % concentrations were prepared to modify the surface chemistry of carbon black. Microwave properties such as the absorption loss, return loss, insertion loss, and dielectric constant were measured in the frequency range of 812 GHz (X-band range). Composites containing formamide-treated carbon black e...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Yesil, O. Koysuren, and G. Bayram, “Effect of Microfiber Reinforcement on the Morphology, Electrical, and Mechanical Properties of the Polyethylene/Poly(ethylene terephthalate)/Carbon Nanotube Composites,”
POLYMER ENGINEERING AND SCIENCE
, pp. 2093–2105, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36006.