Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Accelerated Levi-Civita-Bertotti-Robinson metric in D dimensions
Date
2005-12-01
Author
Gurses, M
Sarıoğlu, Bahtiyar Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
89
views
0
downloads
Cite This
A conformally flat accelerated charge metric is found in an arbitrary dimension D. It is a solution of the Einstein-Maxwell-null fluid equations with a cosmological constant in D >= 4 dimensions. When the acceleration is zero, our solution reduces to the Levi-Civita-Bertotti-Robinson metric. We show that the charge loses its energy, for all dimensions, due to the acceleration.
Subject Keywords
Physics and Astronomy (miscellaneous)
URI
https://hdl.handle.net/11511/36064
Journal
GENERAL RELATIVITY AND GRAVITATION
DOI
https://doi.org/10.1007/s10714-005-0176-y
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Gravitational interactions in 2+1 dimensions
Dereli, Tekin; Tucker, Robin W. (IOP Publishing, 1988-7-1)
Modifications to Einstein's vacuum equations for gravitation in 2+1 dimensions are studied. The addition of the Schouten-Eisenhart 2-forms to the field equations admits gravitational wave solutions although no non-trivial static rotationally symmetric metrics exist. Higher-order derivative models for the metric are discussed together with a 2+1 Brans-Dicke theory. The latter is solved for a static metric exhibiting singularities.
Radiation in Yang-Mills Formulation of Gravity and a Generalized pp-Wave Metric
Başkal, Sibel (Oxford University Press (OUP), 1999-10-1)
Variational methods applied to a quadratic Yang-Mills-type Lagrangian yield two sets of relations interpreted as the field equations and the energy-momentum tensor for the gravitational field. A covariant condition is imposed on the energy-momentum tensor in order for it to represent the radiation field. A generalized pp-wave metric is found to simultaneously satisfy both the field equations and the radiation condition. The result is compared with that of Lichnerowicz.
New approach to conserved charges of generic gravity in AdS spacetimes
Altas, Emel; Tekin, Bayram (American Physical Society (APS), 2019-02-12)
Starting from a divergence-free rank-4 tensor of which the trace is the cosmological Einstein tensor, we give a construction of conserved charges in Einstein's gravity and its higher derivative extensions for asymptotically anti-de Sitter spacetimes. The current yielding the charge is explicitly gauge invariant, and the charge expression involves the linearized Riemann tensor at the boundary. Hence, to compute the mass and angular momenta in these spacetimes, one just needs to compute the linearized Riemann...
THE ENERGY LOCALIZATION PROBLEM AND THE RENORMALIZED VACUUM ENERGY IN STATIC ROBERTSON-WALKER UNIVERSES
BAYM, SS (Springer Science and Business Media LLC, 1994-10-01)
We calculate the renormalized quantum vacuum energy inside a spherical boundary for the massless conformal scalar field in curved background Robertson-Walker geometry. We use the mode sum method with an exponential cuttoff. In our calculations we do not make assumptions about the exterior geometry or the global topology of the universe.
CASIMIR EFFECT IN A HALF EINSTEIN UNIVERSE - AN EXACTLY SOLVABLE CASE IN CURVED BACKGROUND AND WITH A SPHERICAL BOUNDARY
BAYIN, SS; OZCAN, M (IOP Publishing, 1993-09-01)
We reconsider the Casimir problem for the massless conformal scalar field in a 'half Einstein universe'. We first calculate the renormalized vacuum energy by using the mode sum method. Next, we calculate the renormalized vacuum energy-momentum tensor by using the point-splitting method. We construct the Green function by using the eigenfunctions, which are obtained by solving the wave equation with the appropriate boundary conditions. We discuss the importance of this case as well as its relation to previo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Gurses and B. Ö. Sarıoğlu, “Accelerated Levi-Civita-Bertotti-Robinson metric in D dimensions,”
GENERAL RELATIVITY AND GRAVITATION
, pp. 2015–2022, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36064.