Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A direct drive permanent magnet generator design for a tidal current turbine SeaGen
Date
2011-05-15
Author
Keysan, Ozan
Markus, Mueller
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
In this study, the feasibility of a direct-drive permanent magnet generator for a tidal turbine power take-off system, namely MCT's SeaGen - the world's first full scale commercial tidal turbine- has been investigated. The investigated PM generator topology is called C-GEN which is an air-cored axial-flux generator developed in the University of Edinburgh. The C-GEN is prior to conventional PM generators by absence of magnetic attraction forces between rotor and stator, absence of cogging torque, ease of manufacturing, modularity and high fault-toleration. Firstly, the integrated analytical design tool that couples electromagnetic, structural and thermal aspects of the generator has been introduced. Then, an optimization tool based on genetic algorithm has been used to maximize the annual electricity generation and to minimize the initial cost of the generator. The optimized generator is validated using FEA tools and the specifications of the generator has been presented.
Subject Keywords
Electricity
,
Permanent magnets
,
Rotors
,
Optimization
,
Wind turbines
,
Magnetic flux
,
Generators
URI
https://hdl.handle.net/11511/36180
DOI
https://doi.org/10.1109/iemdc.2011.5994850
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Transverse Flux High Temperature Superconducting Generator Topology for Large Direct Drive Wind Turbines
Keysan, Ozan (2012-01-01)
The cost and mass of an offshore wind turbine power-train can be reduced by using high-temperature superconducting generators, but for a successful commercial design the superconducting generator should be as reliable as its alternatives. In this paper, we present a novel transverse flux superconducting generator topology which is suitable for low-speed, high-torque applications. The generator is designed with a stationary superconducting field winding and a variable reluctance claw pole motor for simplifie...
A Hardware in the loop simulator development for wind energy conversion systems
Pourkeivannour, Siamak; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2019)
In this thesis a wind turbine emulator is developed to replicate the mechanical and electrical behavior of a real wind energy conversion system. A scaling down algorithm is developed to scale down the mechanical behavior of a real wind energy conversion system to a laboratory scale wind turbine emulator. A user interface software is developed to be used as a supervisory control and data acquisition system for the wind turbine emulator in LABVIEW environment. The accuracy of the scaling down algorithm is ver...
A modular and cost-effective superconducting generator design for offshore wind turbines
Keysan, Ozan (IOP Publishing, 2015-03-01)
Superconducting generators have the potential to reduce the tower head mass for large (similar to 10 MW) offshore wind turbines. However, a high temperature superconductor generator should be as reliable as conventional generators for successful entry into the market. Most of the proposed designs use the superconducting synchronous generator concept, which has a higher cost than conventional generators and suffers from reliability issues. In this paper, a novel claw pole type of superconducting machine is p...
Design of a Power Plant Emulator for the Dynamic Frequency Stability Studies
Duymaz, Erencan; Pourkeivannour, Siamak; Ceylan, Doğa; ŞAHİN, İLKER; Keysan, Ozan (2018-10-25)
Increasing renewable energy integration to grid requires inertial support to improve frequency stability of the power system. Inertial support of renewable energy systems requires hardware verification in order to test practical limitations and absence of dynamical grid simulators makes verification studies more challenging. In this study, a test rig which is composed of a DC motor, an AC synchronous generator and an external flywheel, is developed in order to provide a platform in which dynamic properties ...
A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines
Zeinali, Reza; Keysan, Ozan (MDPI AG, 2019-02-01)
A novel Vernier type magnetically geared direct-drive generator for large wind turbines is introduced in this paper. Conventional Vernier-type machines and most of the direct-drive wind turbine generators use excessive amount of permanent magnet, which increases the overall cost and makes the manufacturing process challenging. In this paper, an electrically excited (PM_less) claw-pole type Vernier machine is presented. This new topology has the potential of reducing mass and cost of the generator, and can m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Keysan and M. Markus, “A direct drive permanent magnet generator design for a tidal current turbine SeaGen,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36180.