Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Differential Quadrature Solution of Hyperbolic Telegraph Equation
Download
index.pdf
Date
2012-01-01
Author
Pekmen, B.
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
167
views
75
downloads
Cite This
Differential quadrature method (DQM) is proposed for the numerical solution of one- and two-space dimensional hyperbolic telegraph equation subject to appropriate initial and boundary conditions. Both polynomial-based differential quadrature (PDQ) and Fourier-based differential quadrature (FDQ) are used in space directions while PDQ is made use of in time direction. Numerical solution is obtained by using Gauss-Chebyshev-Lobatto grid points in space intervals and equally spaced and/or GCL grid points for the time interval. DQM in time direction gives the solution directly at a required time level or steady state without the need of iteration. DQM also has the advantage of giving quite good accuracy with considerably small number of discretization points both in space and time direction.
Subject Keywords
2 space dimensions
,
Variable-coefficients
,
Numerical-solution
,
Scheme
URI
https://hdl.handle.net/11511/36247
Journal
JOURNAL OF APPLIED MATHEMATICS
DOI
https://doi.org/10.1155/2012/924765
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Dynamics of numerical methods for cosymmetric ordinary differential equations
Govorukhin, VN; Tsybulin, VG; Karasözen, Bülent (2001-09-01)
The dynamics of numerical approximation of cosymmetric ordinary differential equations with a continuous family of equilibria is investigated. Nonconservative and Hamiltonian model systems in two dimensions are considered and these systems are integrated with several first-order Runge-Kutta methods. The preservation of symmetry and cosymmetry, the stability of equilibrium points, spurious solutions and transition to chaos are investigated by presenting analytical and numerical results. The overall performan...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
ON GENERALIZED LOCAL SYMMETRIES OF THE SO(2,1) INVARIANT NONLINEAR SIGMA-MODEL
BASKAL, S; ERIS, A; SATIR, A (1994-12-19)
The symmetries and associated conservation laws of the SO(2,1) invariant non-linear sigma model equations in 1+1 dimensions are investigated. An infinite family of generalized local symmetries is presented and the uniqueness of these solutions is discussed.
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
Pekmen, B.; Tezer, Münevver (2012-08-01)
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in s...
Differential equations on variable time scales
Akhmet, Marat (2009-02-01)
We introduce a class of differential equations on variable time scales with a transition condition between two consecutive parts of the scale. Conditions for existence and uniqueness of solutions are obtained. Periodicity, boundedness and stability of solutions are considered. The method of investigation is by means of two successive reductions: B-equivalence of the system [E. Akalfn, M.U. Akhmet, The principles of B-smooth discontinuous flows, Computers and Mathematics with Applications 49 (2005) 981-995; ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Pekmen and M. Tezer, “Differential Quadrature Solution of Hyperbolic Telegraph Equation,”
JOURNAL OF APPLIED MATHEMATICS
, pp. 0–0, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36247.