All-optical switching of a microcavity repeated at terahertz rates

Yüce, Emre
Dupuy, Emmanuel
Buijs, Robin D.
de Ronde, Bob
Mosk, Allard P.
GÉRARD, Jean-Michel
Vos, Willem L.
We have repeatedly and reproducibly switched a GaAs-AlAs planar microcavity operating in the "original" telecom band by exploiting the virtually instantaneous electronic Kerr effect. We achieve repetition times as fast as 300 fs, thereby breaking the terahertz modulation barrier. The rate of the switching in our experiments is only determined by optics and not by material-related relaxation. Our results offer opportunities for fundamental studies of cavity quantum electrodynamics and optical information processing in the subpicosecond time scale. (C) 2013 Optical Society of America


Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect
Yüce, Emre; CLAUDON, Julien; GÉRARD, Jean-Michel; Vos, Willem L. (The Optical Society, 2016-01-11)
We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of t...
Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 mu m
Pavlov, Ihor; Ilbey, E.; Ilday, F. O. (The Optical Society, 2014-05-01)
This Letter reports on an all-fiber-integrated master-oscillator, power amplifier system at 1.55 mu m producing 5-ns, 100-mu J pulses. These pulses are generated at a 100 kHz repetition rate, corresponding to 10 W of average power. The seed source is a low-power, current-modulated, single-frequency, distributed feedback semiconductor laser. System output is obtained from a standard single-mode fiber (Corning SMF-28). Consequently, the beam is truly diffraction limited, which was independently proven by M-2 ...
High power microsecond fiber laser at 1.5 μm
Pavlova, Svitlana; Yagci, M. Emre; Eken, S. Koray; Tunckol, Ersan; Pavlov, Ihor (The Optical Society, 2020-06-08)
© 2020 Optical Society of America.In this work, we demonstrate a single frequency, high power fiber-laser system, operating at 1550 nm, generating controllable rectangular-shape μs pulses. In order to control the amplified spontaneous emission content, and overcome the undesirable pulse steepening during the amplification, a new method with two seed sources operating at 1550 nm and 1560 nm are used in this system. The output power is about 35 W in CW mode, and the peak power is around 32 W in the pulsed mod...
Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip
Xu, Xinan; Xie, Zhenda; Zheng, Jiangjun; Liang, Junlin; Zhong, Tian; Yu, Mingbin; Kocaman, Serdar; Lo, Guo-Qiang; Kwong, Dim-Lee; Englund, Dirk R.; Wong, Franco N.C.; Wong, Chee Wei (The Optical Society, 2013-02-25)
Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated,...
Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz
We propose a microwave imaging structure with GSM, ISM, Wi-Fi, and WiMAX operating frequencies at 1.80, 2.45, and 5.80 GHz, respectively. The suggested structure is based on a microwave antenna-inspired absorber with cavities in resonator layers. Our study, which is validated using simulation and experimental techniques, deals with the absorption of the incident electromagnetic waves at 1.80, 2.45, and 5.80 GHz for creating the image when radio frequency microwave is employed. The above-mentioned three oper...
Citation Formats
E. Yüce et al., “All-optical switching of a microcavity repeated at terahertz rates,” OPTICS LETTERS, pp. 374–376, 2013, Accessed: 00, 2020. [Online]. Available: