Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

Download
2016-01-11
Yüce, Emre
CLAUDON, Julien
GÉRARD, Jean-Michel
Vos, Willem L.
We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central lambda-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect. (C) 2016 Optical Society of America
OPTICS EXPRESS

Suggestions

All-optical switching of a microcavity repeated at terahertz rates
Yüce, Emre; CLAUDON, Julien; Dupuy, Emmanuel; Buijs, Robin D.; de Ronde, Bob; Mosk, Allard P.; GÉRARD, Jean-Michel; Vos, Willem L. (The Optical Society, 2013-02-01)
We have repeatedly and reproducibly switched a GaAs-AlAs planar microcavity operating in the "original" telecom band by exploiting the virtually instantaneous electronic Kerr effect. We achieve repetition times as fast as 300 fs, thereby breaking the terahertz modulation barrier. The rate of the switching in our experiments is only determined by optics and not by material-related relaxation. Our results offer opportunities for fundamental studies of cavity quantum electrodynamics and optical information pro...
High power microsecond fiber laser at 1.5 μm
Pavlova, Svitlana; Yagci, M. Emre; Eken, S. Koray; Tunckol, Ersan; Pavlov, Ihor (The Optical Society, 2020-06-08)
© 2020 Optical Society of America.In this work, we demonstrate a single frequency, high power fiber-laser system, operating at 1550 nm, generating controllable rectangular-shape μs pulses. In order to control the amplified spontaneous emission content, and overcome the undesirable pulse steepening during the amplification, a new method with two seed sources operating at 1550 nm and 1560 nm are used in this system. The output power is about 35 W in CW mode, and the peak power is around 32 W in the pulsed mod...
Performance of M-ary pulse position modulation for aeronautical uplink communications in an atmospheric turbulent medium
Ata, Yalcin; Baykal, Yahya; Gokce, Muhsin Caner (The Optical Society, 2019-10-01)
This paper discusses the bit-error-rate (BER) performance of an aeronautical uplink optical wireless communication system (OWCS) when a Gaussian beam is employed and the M-ary pulse position modulation technique is used in an atmospheric turbulent medium. Weak turbulence conditions and log-normal distribution are utilized. The Gaussian beam is assumed to propagate on a slant path, the transmitter being ground-based, and the airborne receiver is on-axis positioned. Variations of BER are obtained against the ...
Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz
ALKURT, FATİH ÖZKAN; ALTINTAŞ, OLCAY; Atci, Ahmet; BAKIR, MEHMET; ÜNAL, EMİN; AKGÖL, OĞUZHAN; DELİHACIOĞLU, KEMAL; KARAASLAN, MUHARREM; Sabah, Cumali (SPIE-Intl Soc Optical Eng, 2018-11-01)
We propose a microwave imaging structure with GSM, ISM, Wi-Fi, and WiMAX operating frequencies at 1.80, 2.45, and 5.80 GHz, respectively. The suggested structure is based on a microwave antenna-inspired absorber with cavities in resonator layers. Our study, which is validated using simulation and experimental techniques, deals with the absorption of the incident electromagnetic waves at 1.80, 2.45, and 5.80 GHz for creating the image when radio frequency microwave is employed. The above-mentioned three oper...
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
Citation Formats
E. Yüce, J. CLAUDON, J.-M. GÉRARD, and W. L. Vos, “Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect,” OPTICS EXPRESS, pp. 239–253, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39611.