A minisum location problem with regional demand considering farthest Euclidean distances

2016-06-01
DİNLER, DERYA
Tural, Mustafa Kemal
We consider a continuous multi-facility location-allocation problem that aims to minimize the sum of weighted farthest Euclidean distances between (closed convex) polygonal and/or circular demand regions, and facilities they are assigned to. We show that the single facility version of the problem has a straightforward second-order cone programming formulation and can therefore be efficiently solved to optimality. To solve large size instances, we adapt a multi-dimensional direct search descent algorithm to our problem which is not guaranteed to find the optimal solution. In a special case with circular and rectangular demand regions, this algorithm, if converges, finds the optimal solution. We also apply a simple subgradient method to the problem. Furthermore, we review the algorithms proposed for the problem in the literature and compare all these algorithms in terms of both solution quality and time. Finally, we consider the multi-facility version of the problem and model it as a mixed integer second-order cone programming problem. As this formulation is weak, we use the alternate location-allocation heuristic to solve large size instances.
OPTIMIZATION METHODS & SOFTWARE

Suggestions

The Weber problem in congested regions with entry and exit points
Farham, Mohammad Saleh; Süral, Haldun; İyigün, Cem (2015-10-01)
The Weber problem is about finding a facility location on a plane such that the total weighted distance to a set of given demand points is minimized. The facility location and access routes to the facility can be restricted if the Weber problem contains congested regions, some arbitrary shaped polygonal areas on the plane, where location of a facility is forbidden and traveling is allowed at an additional fixed cost. Traveling through congested regions may also be limited to certain entry and exit points (o...
A Multi-level continuous minimax location problem with regional demand
Faridyahyaei, Amin; Tural, Mustafa Kemal; Department of Industrial Engineering (2017)
The minimax facility location problem seeks for the optimal locations of the facilities in the plane so that the maximum Euclidean distance between the demanding entities (given points in the plane) and their corresponding nearest facilities is minimized. In the solutions, remote entities (irrespective of their weights) tend to pull the facilities toward themselves which may result in larger distances for the other entities. In this thesis, we consider a multi-level minimax location problem which allows som...
A modal superposition method for non-linear structures
Kuran, B; Özgüven, Hasan Nevzat (Elsevier BV, 1996-01-25)
The dynamic response of multi-degree of freedom (MDOF) non-linear structures is usually determined by the numerical integration of equations of motion. This is computationally very costly for steady state response analysis. In this study, a powerful and economical method is developed for the harmonic response analysis of non-linear structures. In this method, the equations of motion are first converted into a set of non-linear algebraic equations, and then the number of equations to be solved is reduced by ...
A generalized Weiszfeld method for the multi-facility location problem
İyigün, Cem (2010-05-01)
An iterative method is proposed for the K facilities location problem. The problem is relaxed using probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose the problem into K single-facility location problems, are updated at each iteration together with the facility locations. The proposed method is a natural generalization of the Weiszfeld method to several facilities.
A general representation for classical detection theory with Euclidean geometry Klasik tespit kurami için Öklid geometrisi ile genel bir gösterim
Bayramog̃lu, Muhammet Fatih; Yılmaz, Ali Özgür (2010-12-01)
A general geometric representation for the classical detection theory which is compatible with Euclidean geometry is proposed. The proposed representation is so generic that can be employed to almost all communication problems. The a posteriori probability of a symbol given an observation occurred decreases exponentially with the square of the Eclidean distance between vectors in R N that the symbol and the observation are mapped onto.
Citation Formats
D. DİNLER and M. K. Tural, “A minisum location problem with regional demand considering farthest Euclidean distances,” OPTIMIZATION METHODS & SOFTWARE, pp. 446–470, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36335.