The Sturm-Liouville operator on the space of functions with discontinuity conditions

2006-03-01
The Sturm-Liouville differential operators defined on the space of discontinuous functions, where the moments of discontinuity of the functions are interior points of the interval and the discontinuity conditions are linear have been studied. Auxiliary results concerning the Green's formula, boundary value, and eigenvalue problems for impulsive differential equations are emphasized.
COMPUTERS & MATHEMATICS WITH APPLICATIONS

Suggestions

A Rayleigh–Ritz Method for Numerical Solutions of Linear Fredholm Integral Equations of the Second Kind
Kaya, Ruşen; Taşeli, Hasan (2022-01-01)
A Rayleigh–Ritz Method is suggested for solving linear Fredholm integral equations of the second kind numerically in a desired accuracy. To test the performance of the present approach, the classical one-dimensional Schrödinger equation -y″(x)+v(x)y(x)=λy(x),x∈(-∞,∞) has been converted into an integral equation. For a regular problem, the unbounded interval is truncated to x∈ [ - ℓ, ℓ] , where ℓ is regarded as a boundary parameter. Then, the resulting integral equation has been solved and the results are co...
Boundary value problems for higher order linear impulsive differential equations
Uğur, Ömür; Akhmet, Marat (2006-07-01)
In this paper higher order linear impulsive differential equations with fixed moments of impulses subject to linear boundary conditions are studied. Green's formula is defined for piecewise differentiable functions. Properties of Green's functions for higher order impulsive boundary value problems are introduced. An appropriate example of the Green's function for a boundary value problem is provided. Furthermore, eigenvalue problems and basic properties of eigensolutions are considered. (c) 2006 Elsevier In...
An Asymptotic-Numerical Hybrid Method for Solving Singularly Perturbed Linear Delay Differential Equations
Cengizci, Süleyman (Hindawi Limited, 2017)
In thiswork, approximations to the solutions of singularly perturbed second-order linear delay differential equations are studied. We firstly use two-term Taylor series expansion for the delayed convection term and obtain a singularly perturbed ordinary differential equation (ODE). Later, an efficient and simple asymptotic method so called Successive Complementary Expansion Method (SCEM) is employed to obtain a uniformly valid approximation to this corresponding singularly perturbed ODE. As the final step, ...
An eigenfunction expansion for the Schrodinger equation with arbitrary non-central potentials
Taşeli, Hasan; Uğur, Ömür (2002-11-01)
An eigenfunction expansion for the Schrodinger equation for a particle moving in an arbitrary non-central potential in the cylindrical polar coordinates is introduced, which reduces the partial differential equation to a system of coupled differential equations in the radial variable r. It is proved that such an orthogonal expansion of the wavefunction into the complete set of Chebyshev polynomials is uniformly convergent on any domain of (r, theta). As a benchmark application, the bound states calculations...
The scaled Hermite–Weber basis in the spectral and pseudospectral pictures
Taşeli, Hasan (Springer Science and Business Media LLC, 2005-10)
Computational efficiencies of the discrete (pseudospectral, collocation) and continuous (spectral, Rayleigh-Ritz, Galerkin) variable representations of the scaled Hermite-Weber basis in finding the energy eigenvalues of Schrodinger operators with several potential functions have been compared. It is well known that the so-called differentiation matrices are neither skew-symmetric nor symmetric in a pseudospectral formulation of a differential equation, unlike their Rayleigh-Ritz counterparts. In spite of th...
Citation Formats
Ö. Uğur, “The Sturm-Liouville operator on the space of functions with discontinuity conditions,” COMPUTERS & MATHEMATICS WITH APPLICATIONS, pp. 889–896, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31927.