Stochastic strong ground motion simulations in sparsely-monitored regions: A validation and sensitivity study on the 13 March 1992 Erzincan (Turkey) earthquake

2013-12-01
Stochastic simulations have recently become quite popular for estimating synthetic ground motion time histories. For seismically active regions that are not well-monitored or studied extensively, input parameters of the simulations should be carefully selected as the reliability of the simulation results directly depends on the accuracy of the input parameters. In the first part of this study, 13 March 1992 Erzincan (eastern Turkey) earthquake (Mw=6.6), which is recorded at only three strong ground motion stations, is simulated using the stochastic finite-fault method. The source and regional path parameters for this event are adopted from previously validated studies whereas the local site parameters are derived herein. In the second part of the paper, sensitivity of the simulation results with respect to small changes in selected input seismic parameters is investigated. The parameters for which sensitivities are computed include stress drop, crustal shear-wave quality factor and kappa operator. A change of 20% in stress drop value results in 14% change in PGA, whereas a 20% difference in the Q(0) value causes 17% change in PGA, and a 20% variation in kappa leads to 15% difference in PGA. Numerical experiments presented in this study prove that the ground motion simulations are prone to trade-off between the source, path and site filters. Hence, input models must be implemented carefully for reliable synthetic ground motions. (C) 2013 Published by Elsevier Ltd.
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING

Suggestions

Seismological and Engineering Demand Misfits for Evaluating Simulated Ground Motion Records
Karim Zadeh Naghshineh, Shaghayegh (2019-11-01)
Simulated ground motions have recently gained more attention in seismology and earthquake engineering. Since different characteristics of waveforms are expected to influence alternative structural response parameters, evaluation of simulations, for key components of seismological and engineering points of view is necessary. When seismological aspect is of concern, consideration of a representative set of ground motion parameters is imperative. Besides, to test the applicability of simulations in earthquake ...
Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2015-11-20)
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the correspondi...
Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2017-07-01)
In regions with sparse ground motion data, simulations provide alternative acceleration time series for evaluation of the dynamic response of a structure. Different ground motion simulation methods provide varying levels of goodness of fit between observed and synthetic data. Before using the seismologically acceptable synthetic records for engineering purposes, it is critical to investigate the efficiency of synthetics in predicting observed seismic responses of structures. For this purpose, in this study ...
Stochastic Momentum Methods For Optimal Control Problems Governed By Convection-diffusion Equations With Uncertain Coefficients
Toraman, Sıtkı Can; Yücel, Hamdullah; Department of Scientific Computing (2022-1-6)
Many physical phenomena such as the flow of an aircraft, heating process, or wave propagation are modeled mathematically by differential equations, in particular partial differential equations (PDEs). Analytical solutions to PDEs are often unknown or very hard to obtain. Because of that, we simulate such systems by numerical methods such as finite difference, finite volume, finite element, etc. When we want to control the behavior of certain system components, such as the shape of a wing of an aircraft or a...
Assessment of synthetic ground motion records obtained from alternative simulation techniques in nonlinear time history analyses of multi-storey frame buildings: A case study
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2014-07-02)
Full time series of ground acceleration are required for nonlinear time history analyses to evaluate the dynamic response of a structure under earthquake excitations. In regions with sparse ground motion data, alternative ground motion simulation techniques are used to generate acceleration time series with varying levels of accuracy. While using simulated records for engineering purposes, it is critical to investigate the efficiency of these records in predicting the real engineering demands. For this purp...
Citation Formats
A. Askan Gündoğan and B. Ugurhan, “Stochastic strong ground motion simulations in sparsely-monitored regions: A validation and sensitivity study on the 13 March 1992 Erzincan (Turkey) earthquake,” SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, pp. 170–181, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36436.