Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Installation of the METU Defocusing Beamline to Perform Space Radiation Tests
Date
2019-01-01
Author
Demirköz, Melahat Bilge
Poyrazoglu, Anil Berkay
Seckin, Caner
Uslu, Pelin
Celik, Nazire
Bulbul, Besna
Albarodi, Abdulrahman
Akcelik, Selen
Orhan, Yusuf
Avaroglu, Akanay
Kilic, Erinc
Saral, Caglar
Duran, Selcen Uzun
Yigitoglu, Merve
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
298
views
0
downloads
Cite This
METU Defocusing Beamline (DBL) is being installed at TAEA SANAEM Proton Accelerator Facility [1] for radiation tests of electronic devices to be used in satellites and spacecrafts which are exposed to a high radiation dose in space or at the Hi-Lumi LHC [2]. 15 - 30 MeV protons from the accelerator are spread out over an area of 15.40 X 21.55 cm to provide large irradiation in accordance to ESA/ESCC No. 25100 standard with METU-DBL. A wide selectable flux menu ranging from 10(5) - 10(10) p/cm(2)/s will be available to users starting in summer 2019. The final design has been updated with the experience gained from the pre-test setup installation [3] and the ensuing irradiation campaign with different users [4]. In this paper, magnetic measurement results of a custom design quadrupole magnet, as well as updates to the mechanical, robotic and control subsystems are presented.
Subject Keywords
Proton accelerator facility
,
Space radiation
,
Single event effect
URI
https://hdl.handle.net/11511/36465
DOI
https://doi.org/10.1109/rast.2019.8767855
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Metu-Defocusing Beamline : A 15-30 Mev Proton Irradiation Facility and Beam Measurement System
Demirköz, Melahat Bilge; Akanay, Avaroğlu; Besna, Bülbül; Pelin, Uslu; Erinç, Kılıç; Yusuf, Orhan; Selen, Akçelik; Merve, Yiğitoğlu; Çağlar, Saral; Uzun Duran, Selcen; Kılıç, Uğur; İlias, Efthymiopoulos; Anıl Berkay, Poyrazoğlu; Abdrahman, Albarodi; Nazire, Çelik (2020-01-01)
Middle East Technical University – Defocusing Beam Line (METU-DBL) project is an irradiation facility providing 15 MeV to 30 MeV kinetic energy protons for testing various high radiation level applications, ranging from Hi-Lumi LHC upgrade, space electronic components to nuclear material research. The project located inside the premises of the TAEA (Turkish Atomic Energy Agency) SANAEM (Saraykoy Nuclear Education and Research Center) close to Ankara, provides users a wide selectable flux menu (105–1010 p/cm...
Pretest Setup Installation of the METU-DBL Project to Perform Space Radiation Tests
Demirköz, Melahat Bilge; Gencer, Ayşenur; Milanese, Attilio; Yigitoglu, Merve; Şahin, İlker; Baslar, Gamze Kilicerkan; Aydın, Murat; Uslu, Pelin; Duran, Selcen Uzun; Veske, Doga; Uzel, Ramazan; Bodur, Baran (2017-06-22)
Satellites and spacecrafts are exposed to space radiation environment during their mission. This environment consists of cosmic rays, solar particles and trapped particles. Cosmic rays are coming fromthe outside of our solar system. Solar particles are produced by the Sun. These particles can be trapped around the Earth's magnetic field lines when they approach the Earth's atmosphere. These particles can affect performance and robustness of electronic components or materials used in space and such effects c...
Design of an irradiation test facility for space applications
Kızılören, Dilek; Demirköz, Melahat Bilge; Department of Physics (2014)
Space radiation damages electronic components of spacecraft. Damages are due to cosmic rays which consist of protons, photons, electrons, and heavy nuclei. Function- ality and performance of the electronic components in flight depend on the orbital pa- rameters of spacecrafts and exposure time. The space radiation causes three types of effects and these are categorized as Single Event Effects (SEEs), Total Ionizing Dose (TID) Effects and Non-Ionizing Dose Displacement Damage Effects. Radiation hard- ness ass...
Design of a space radiation monitor for a spacecraft in leoand results from a prototype on the first Turkish sounding rocket
Albarodi, Abdulrahman; Demirköz, Melahat Bilge; Department of Physics (2021-2-03)
Radiation damage to spacecraft is a major reason for malfunctions in electronic components. Monitoring real-time radiation that the spacecraft is exposed to is of utmost importance for subsequent investigation of faults and their correlation to radiation doses. Components which have completed mission lifetime successfully in space and therefore have gained heritage can be certified to a certain level of radiation tolerance for future missions. The design and optimization of a space ...
Space radiation environment and radiation hardness assurance tests of electronic components to be used in space missions
Amutkan, Özge; Esendemir, Akif; Department of Physics (2010)
Space radiation is significantly harmful to electronic Components. The operating time, duration and orbit of the space mission are affected by the characteristic of the radiation environment. The aging and the performance of the electronic components are modified by radiation. The performance of the space systems such as electronic units, sensors, power and power subsystem units, batteries, payload equipments, communication units, remote sensing instruments, data handling units, externally located units, an...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. B. Demirköz et al., “Installation of the METU Defocusing Beamline to Perform Space Radiation Tests,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36465.