Design of an irradiation test facility for space applications

Kızılören, Dilek
Space radiation damages electronic components of spacecraft. Damages are due to cosmic rays which consist of protons, photons, electrons, and heavy nuclei. Function- ality and performance of the electronic components in flight depend on the orbital pa- rameters of spacecrafts and exposure time. The space radiation causes three types of effects and these are categorized as Single Event Effects (SEEs), Total Ionizing Dose (TID) Effects and Non-Ionizing Dose Displacement Damage Effects. Radiation hard- ness assurance tests have to be conducted to ensure performance and functionality during operational lifetime of spacecraft. SEE radiation tests are planned to be carried out using a 30 MeV beam line in the Research and Development room of Turkish Atomic Energy Agency (TAEK) at Sarayköy Nuclear Research and Training Center (SANAEM). A reduction of the flux and an enlargement of the target irradiation area are necessary to perform tests accord- ing to ESA Standards. Collimator and thin films are planned to be used to expand the beam line and reduce the flux. The simulation of beam line design is carried out using FLUKA and MADX. The first SEEs radiation test in Turkey is foreseen to be carried out using this beam line.


Space radiation environment and radiation hardness assurance tests of electronic components to be used in space missions
Amutkan, Özge; Esendemir, Akif; Department of Physics (2010)
Space radiation is significantly harmful to electronic Components. The operating time, duration and orbit of the space mission are affected by the characteristic of the radiation environment. The aging and the performance of the electronic components are modified by radiation. The performance of the space systems such as electronic units, sensors, power and power subsystem units, batteries, payload equipments, communication units, remote sensing instruments, data handling units, externally located units, an...
Installation of the METU Defocusing Beamline to Perform Space Radiation Tests
Demirköz, Melahat Bilge; Poyrazoglu, Anil Berkay; Seckin, Caner; Uslu, Pelin; Celik, Nazire; Bulbul, Besna; Albarodi, Abdulrahman; Akcelik, Selen; Orhan, Yusuf; Avaroglu, Akanay; Kilic, Erinc; Saral, Caglar; Duran, Selcen Uzun; Yigitoglu, Merve (2019-01-01)
METU Defocusing Beamline (DBL) is being installed at TAEA SANAEM Proton Accelerator Facility [1] for radiation tests of electronic devices to be used in satellites and spacecrafts which are exposed to a high radiation dose in space or at the Hi-Lumi LHC [2]. 15 - 30 MeV protons from the accelerator are spread out over an area of 15.40 X 21.55 cm to provide large irradiation in accordance to ESA/ESCC No. 25100 standard with METU-DBL. A wide selectable flux menu ranging from 10(5) - 10(10) p/cm(2)/s will be a...
Pretest Setup Installation of the METU-DBL Project to Perform Space Radiation Tests
Demirköz, Melahat Bilge; Gencer, Ayşenur; Milanese, Attilio; Yigitoglu, Merve; Şahin, İlker; Baslar, Gamze Kilicerkan; Aydın, Murat; Uslu, Pelin; Duran, Selcen Uzun; Veske, Doga; Uzel, Ramazan; Bodur, Baran (2017-06-22)
Satellites and spacecrafts are exposed to space radiation environment during their mission. This environment consists of cosmic rays, solar particles and trapped particles. Cosmic rays are coming fromthe outside of our solar system. Solar particles are produced by the Sun. These particles can be trapped around the Earth's magnetic field lines when they approach the Earth's atmosphere. These particles can affect performance and robustness of electronic components or materials used in space and such effects c...
Design of a space radiation monitor for a spacecraft in leoand results from a prototype on the first Turkish sounding rocket
Albarodi, Abdulrahman; Demirköz, Melahat Bilge; Department of Physics (2021-2-03)
Radiation damage to spacecraft is a major reason for malfunctions in electronic components. Monitoring real-time radiation that the spacecraft is exposed to is of utmost importance for subsequent investigation of faults and their correlation to radiation doses. Components which have completed mission lifetime successfully in space and therefore have gained heritage can be certified to a certain level of radiation tolerance for future missions. The design and optimization of a space ...
Development of a radioecological model for accidental release of radionuclides
Unver, O.; Kocar, C.; Tuncel, G. (Carl Hanser Verlag, 2020-10-01)
A dynamic radioecological model was developed to estimate radiation doses and stochastic health risks due to atmospheric releases in case of a nuclear reactor accident. Activities in some foodstuffs, feedstuffs and grass, and doses from different pathways for age groups and stochastic risks can be calculated by the model. Dynamic features include food harvesting, sowing times, feeding regimes, and the growing up of a person. The model can be coupled to any atmospheric dispersion model which can calculate ra...
Citation Formats
D. Kızılören, “Design of an irradiation test facility for space applications,” M.S. - Master of Science, Middle East Technical University, 2014.