Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis
Date
2015-08-01
Author
Bayram, Barış
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m x m configuration (m = 1 - 5) is investigated using finite element analysis (FEA) of a commercially available software package (ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation impedance and the pressure spectra are reported. This FEA provides an accurate behavior of the acoustic coupling of a thin membrane in a multi-membrane configuration, and extends above the anti-resonance frequency. The first resonance frequency of the membrane is excited for m x m (m >= 3) configuration in conventional mode and for m x m (m >= 2) configuration in collapse mode. Therefore, this frequency is determined to be responsible for the adverse effects observed in radiation impedance and pressure spectrum. A membrane configuration, which is missing the central membrane from the full m x m configuration is proposed, and is investigated with the FEA. This study is beneficial for the design of precise transducers suited for biomedical applications. (C) 2015 Acoustical Society of America.
URI
https://hdl.handle.net/11511/36628
Journal
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
DOI
https://doi.org/10.1121/1.4923361
Collections
Department of Electrical and Electronics Engineering, Article