Investigation of the elastic material properties of Class G cement

2017-02-01
Class G cements are sulfate-resistant Portland cements with different setting time requirements and have a common field of use in the oil industry. Compared to other American Petroleum Institute class cements, Class G has a utilization of more than 95% worldwide in oil well applications. Different additives are used together with Class G cement to achieve optimum hardening conditions. In this study, the elastic material properties of high sulfate-resistant (HSR) Class G cements are investigated for a special case implemented in solution mining. There are no published studies to date on the mechanical properties of Class G oil well cements for more than 3 days of curing time and various water-cement ratios. Uniaxial compressive strength, Young's modulus, and Poisson's ratio determination are carried out on a total of 108 samples with different curing times (2, 7, and 14 days) and water-cement ratios (0.4, 0.5, 0.6, and 0.8). Laboratory results were subject to Dixon's Q test for outlier elimination and were analyzed by fitting a multivariable nonlinear regression model to estimate uniaxial compressive strength and Young's modulus.
STRUCTURAL CONCRETE

Suggestions

Investigation of Moisture Dissipation in Foam-Based Warm Mix Asphalt Using Synchrotron-Based X-Ray Microtomography
Kutay, M. Emin; Öztürk, Hande Işık (American Society of Civil Engineers (ASCE), 2012-06-04)
Foam-based Warm Mix Asphalt (WMA) technologies decrease the viscosity of the asphalt so that it is workable during construction. However, after construction, viscosity increases rapidly as the foam disappears and temperature drops. During the process of dissipation of foam, depending on the environmental conditions, the moisture may not escape and may be trapped inside the mixture. This trapped moisture can cause detrimental failures by breaking the adhesive bonds between the aggregates and the asphalt bind...
Activation of Blast Furnace Slag with Soda Production Waste
Bilginer, Baki Aykut; Erdoğan, Sinan Turhan (American Society of Civil Engineers (ASCE), 2020-01-01)
Although the absence of portland cement (PC) in alkali-activated slag (AAS) lowers its carbon footprint, conventional alkaline activators like sodium silicate are expensive and have large environmental impacts. Soda solid waste (SSW) is an alkaline waste of the glass industry, and its disposal poses environmental problems. This study investigated the use of SSW to activate ground slag at 60 degrees C-120 degrees C. Strength development of mortars and heat evolution of pastes were evaluated. Hydration produc...
Properties of Ground Perlite Geopolymer Mortars
Erdoğan, Sinan Turhan (American Society of Civil Engineers (ASCE), 2015-07-01)
Perlite is a volcanic aluminosilicate abundant in several countries that are major producers of portland cement. The amorphous nature and silica-to-alumina ratio of ground perlite indicate that it can be activated with alkaline solutions. This study presents the strength development of mixtures containing only ground perlite as their powder binder, activated with sodium hydroxide and/or sodium silicate solutions, at room temperature or using oven curing. The structure of the formed geopolymers is investigat...
Comprehensive Evaluation of AIMS Texture, Angularity, and Dimension Measurements
Mahmoud, Enad; Gates, Leslie; Masad, Eyad; Erdoğan, Sinan Turhan; Garboczi, Edward (American Society of Civil Engineers (ASCE), 2010-04-01)
Aggregates are the most widely used construction materials in the world in structures built from both asphaltic and portland cement concrete composites. The performance of these composites is affected by aggregate shape characteristics (e.g., angularity, texture, and dimensions). The aggregate imaging system (AIMS) is a computer automated system that was developed to measure aggregate shape characteristics using digital camera images of aggregates. This paper addresses four issues concerning AIMS measuremen...
Development of silica fume-based geopolymer foams
Shakouri, Sahra; Bayer, Özgür; Erdoğan, Sinan Turhan (Elsevier BV, 2020-11-01)
Thermal insulation materials are critical for reducing the energy consumption and carbon emissions associated with buildings. A good insulation material must not only have low density and sufficient mechanical properties but also resist high temperatures and fires. In addition, its production process must be simple and inexpensive. This study describes the production of very low density (>85 kg/m(3)) inorganic foams with high porosity (<94%). Silica fume and NaOH solutions are mixed to prepare a geopolymer ...
Citation Formats
D. Guner, H. Öztürk, and M. Erkayaoğlu, “Investigation of the elastic material properties of Class G cement,” STRUCTURAL CONCRETE, pp. 84–91, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36670.