Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Properties of Ground Perlite Geopolymer Mortars
Date
2015-07-01
Author
Erdoğan, Sinan Turhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
254
views
0
downloads
Cite This
Perlite is a volcanic aluminosilicate abundant in several countries that are major producers of portland cement. The amorphous nature and silica-to-alumina ratio of ground perlite indicate that it can be activated with alkaline solutions. This study presents the strength development of mixtures containing only ground perlite as their powder binder, activated with sodium hydroxide and/or sodium silicate solutions, at room temperature or using oven curing. The structure of the formed geopolymers is investigated using X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The thermal stability and acid resistance of the mixtures are evaluated. Sodium silicate-activated mixtures slowly reach moderate strengths at room temperature but sodium hydroxide-activated ones do not develop strength regardless of activator concentration. Both activators produce geopolymers with high strengths with 100 degrees C dry oven curing. Sodium silicate-activated specimens are more resistant to high temperatures but less resistant to a sulfuric acid solution than are sodium hydroxide solution-activated specimens. Being natural and having a more consistent chemical composition compared with most artificial pozzolans make perlite an attractive geopolymer raw material.
Subject Keywords
General Materials Science
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/43073
Journal
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
DOI
https://doi.org/10.1061/(asce)mt.1943-5533.0001172
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Activation of Blast Furnace Slag with Soda Production Waste
Bilginer, Baki Aykut; Erdoğan, Sinan Turhan (American Society of Civil Engineers (ASCE), 2020-01-01)
Although the absence of portland cement (PC) in alkali-activated slag (AAS) lowers its carbon footprint, conventional alkaline activators like sodium silicate are expensive and have large environmental impacts. Soda solid waste (SSW) is an alkaline waste of the glass industry, and its disposal poses environmental problems. This study investigated the use of SSW to activate ground slag at 60 degrees C-120 degrees C. Strength development of mortars and heat evolution of pastes were evaluated. Hydration produc...
Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan
Erdoğan, Sinan Turhan (Elsevier BV, 2013-04-01)
Perlite is a natural pozzolan abundant in several countries which are major producers of cement. This makes perlite attractive for producing sustainable concretes. Strength development and heat evolution of perlite-containing mixtures, and the influence of chemical and thermal activation on their early and later age properties were investigated using five activator chemicals and four curing temperature-duration combinations. Chemical activation could increase the 1-day, or 3-day compressive strengths of 25%...
Properties of blended cements with thermally activated kaolin
Arikan, Metin; Sobolev, Konstantin; Ertuen, Tomris; Yeginobali, Asim; Turker, Pelin (Elsevier BV, 2009-01-01)
Kaolin, one of the materials of major importance for the ceramic and paper industry, is also used in the construction industry as a raw material for the production of white cement clinker and, in the form of metakaolin, as an artificial pozzolanic additive for concrete. Metakaolin is a vital component of high-performance and architectural concrete; however, its application in regular concrete is very limited due to relatively high production costs. This report evaluates the performance of a low-cost metakao...
Comprehensive Evaluation of AIMS Texture, Angularity, and Dimension Measurements
Mahmoud, Enad; Gates, Leslie; Masad, Eyad; Erdoğan, Sinan Turhan; Garboczi, Edward (American Society of Civil Engineers (ASCE), 2010-04-01)
Aggregates are the most widely used construction materials in the world in structures built from both asphaltic and portland cement concrete composites. The performance of these composites is affected by aggregate shape characteristics (e.g., angularity, texture, and dimensions). The aggregate imaging system (AIMS) is a computer automated system that was developed to measure aggregate shape characteristics using digital camera images of aggregates. This paper addresses four issues concerning AIMS measuremen...
Seismic strengthening of pin-connected precast concrete structures with external shear walls and diaphragms
KAPLAN, HASAN; NOHUTCU, HALİL; ÇETİNKAYA, NİHAT; Yilmaz, Salih; Gonen, Hasan; Atimtay, Ergin (Precast/Prestressed Concrete Institute, 2009-12-01)
Pin-connected precast concrete structures are widely used in some European countries of moderate seismicity. However, this structural system is not earthquake resistant because it does not have enough lateral stiffness or lateral-load resistance. Lack of a rigid diaphragm at the roof level imposes severe forces to connections.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Erdoğan, “Properties of Ground Perlite Geopolymer Mortars,”
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43073.