Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Properties of Ground Perlite Geopolymer Mortars
Date
2015-07-01
Author
Erdoğan, Sinan Turhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Perlite is a volcanic aluminosilicate abundant in several countries that are major producers of portland cement. The amorphous nature and silica-to-alumina ratio of ground perlite indicate that it can be activated with alkaline solutions. This study presents the strength development of mixtures containing only ground perlite as their powder binder, activated with sodium hydroxide and/or sodium silicate solutions, at room temperature or using oven curing. The structure of the formed geopolymers is investigated using X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The thermal stability and acid resistance of the mixtures are evaluated. Sodium silicate-activated mixtures slowly reach moderate strengths at room temperature but sodium hydroxide-activated ones do not develop strength regardless of activator concentration. Both activators produce geopolymers with high strengths with 100 degrees C dry oven curing. Sodium silicate-activated specimens are more resistant to high temperatures but less resistant to a sulfuric acid solution than are sodium hydroxide solution-activated specimens. Being natural and having a more consistent chemical composition compared with most artificial pozzolans make perlite an attractive geopolymer raw material.
Subject Keywords
General Materials Science
,
Mechanics of Materials
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/43073
Journal
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
DOI
https://doi.org/10.1061/(asce)mt.1943-5533.0001172
Collections
Department of Civil Engineering, Article