Numerical Modeling of Backfilling Process around Monopiles

Baykal, Cüneyt
Fuhrman, David R
Jacobsen, Niels G
Fredsoe, Jorgen
This study presents a three-dimensional (3D) numerical modeling study on the backfilling process around monopiles. The numerical model utilized in the study is based on that given by Jacobsen (2011). It is composed of two main modules. The first module is the hydrodynamic model where the fluid flow conditions around the structure and near the bed are solved. The second module is the morphologic model where the sediment transport rates over the bed and around the structure are obtained and used in updating bed elevations around the structure. In the numerical model, the hydrodynamic computations are followed by morphologic computations, resulting in updated bed elevations and mesh structure which are again used to update the hydrodynamics for the next time step. In the hydrodynamic model, Reynolds-averaged Navier-Stokes (RANS) equations are solved with a k-ω turbulence closure. The morphologic model comprises five sub-modules, namely bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in OpenFOAM CFD Package. The present model is applied to several problems of backfilling around a monopile by waves only, where the initial scour hole is generated by steady current. The numerical results appear to be in accord with the existing experimental information.


Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines
Fuhrman, David R; Baykal, Cüneyt; Sumer, B Mutlu; Jacobsen, Niels G; Fredsoe, Jorgen (2014-12-01)
A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier-Stokes equations, coupled with k - omega turbulence closure, with additional bed and suspended load descriptions forming the basis for sea bed morphology. The morphological evolution is updated continuously, rather than being based e.g. on period- or other time-averaging...
Nonlinear dynamic modeling of gear-shaft-disk-bearing systems using finite elements and describing functions
Maliha, R; Dogruer, CU; Özgüven, Hasan Nevzat (ASME International, 2004-05-01)
This study presents a new nonlinear dynamic model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur gear pair is coupled with linear finite element models of shafts carrying them, and with discrete models of bearings and disks. The nonlinear elasticity term resulting from backlash is expressed by a describing function, and a method developed in previous studies to determine multi harmonic responses of nonlinear multi-degree-of-freedom systems is employed for the solution. The excitat...
Performance evaluation of saliency map methods on remotely sensed RGB images
Sönmez, Selen; Halıcı, Uğur; Department of Geodetic and Geographical Information Technologies (2016)
Predictive applications of human eye visualization so called saliency map computational models become more attractive in image processing studies. Saliency map highlights regions that are distinctive from their surrounding in the images in interest. In this study, various computational models for salient region detection are investigated on remotely sensed images. The computational methods considered are Itti-Koch, Graph-Based Visual Saliency, Saliency Detection by Combining Simple Priors, Frequency-tuned S...
Nonlinear 3D Modeling and Vibration Analysis of Horizontal Drum Type Washing Machines
Baykal, Cem; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit (2020-01-01)
In this study, a nonlinear 3-D mathematical model for horizontal drum type washing machines is developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and damp...
Mathematical Modeling of Turbulent Flows of Newtonian Fluids in a Concentric Annulus with Pipe Rotation
SORGUN, MEHMET; Aydın, İsmail; ÖZBAYOĞLU, Evren; SCHUBERT, J J (2012-03-01)
In this study, a mathematical model is proposed to predict flow characteristics of Newtonian fluids inside a concentric horizontal annulus. A numerical solution, including pipe rotation, is developed for calculating frictional head losses in concentric annuli for turbulent flow. Navier-Stokes equations are numerically solved using the finite differences technique to obtain the velocity field. Experiments with water are performed in a concentric annulus with and without pipe rotation. Average fluid velocitie...
Citation Formats
C. Baykal, D. R. Fuhrman, N. G. Jacobsen, and J. Fredsoe, “Numerical Modeling of Backfilling Process around Monopiles,” 2014, vol. 1, Accessed: 00, 2020. [Online]. Available: