Impacts of a photovoltaic power plant for possible heat island effect

Today, solar energy conversion technologies take a significant place within the efforts of obtaining renewable and sustainable energy around the world, and show a rapid progress. One of the most common technologies is photovoltaic power plants (PVPP) which are built using PV modules that provide electricity directly from sunlight. These plants are qualified as one of the pioneering applications among clean energy production methods. However, as the modules cover large areas and as they are produced by mostly dark-colored solar cells, an environmental debate has already been opened via some recent studies in the literature: Do they alter the solar reflectivity (albedo) of the region's surface where they are installed, and in turn affect the typical microclimate characteristics of that region such as the local air temperatures, humidity, pressure and wind speed? Considering also the additional heat that the modules radiate while producing electricity, the main probable result should be expected as Heat Island Effect (HIE). HIE has been particularly discussed for about last 10 years. Basically, this effect defines the day-night and inter-seasonal variations of local temperatures due to artificial changes on the natural land surface. Accordingly, when an urbanized area is compared with the neighboring rural areas, the difference is specifically named as Urban Heat Island (UHI) effect. In the present work, we are conducting a field research with in-situ measurements taken by the two weather monitoring stations inside and outside a PVPP in the district Tavsanli (Kutahya, Turkey). We also provide the meteorological data of Tavsanli station from Turkish State Meteorological Service (TSMS), which is the nearest weather monitoring station to the PVPP under inspection. These stations have been collecting the data of air temperature, relative humidity, average wind speed and atmospheric pressure every 10 minutes since October 2017. We used two statistical methods to compare and interpret the first 8-month data of all the three stations. We considered the statistical significance tests for both the first 8 months as a whole and dividing it into two 4 months before and after the PVPP becomes operational. We found that the measurements of the three stations differ significantly for most of the weather parameters. We also carried out pairwise tests and showed that each pair has significant differences for most parameters.
International Conference on Photovoltaic Technologies (PVCon)


Demirezen, Emre; Akınoğlu, Bülent Gültekin; Özden, Talat; Department of Earth System Science (2022-1-18)
Today, solar energy conversion technologies, which are among the methods of obtaining renewable, sustainable, and clean energy, show rapid development. One of the most common technologies is Photovoltaic Solar Power Plant (PVPP), which provides electricity by direct conversion of the energy carried by the sunlight (or daylight). These power plants are socially accepted in environmentally-friendly and economical energy production. However, there are some debates about the environmental impacts of these power...
Analysis And Assessment Of Daily And Seasonal Photovoltaic Heat İsland Effect On Sekbandemirli Rural Region By Local Weather Data Records
DEMİREZEN, EMRE; ÖZDEN, TALAT; Akınoğlu, Bülent Gültekin (2022-1-01)
Photovoltaic Power Plants have a considerable share among solar energy conversion technologies toward environmentally sustainable and economically feasible electricity production. However, when a rural region's land surface formed by natural soil types is covered by a Photovoltaic Power Plant (PVPP)'s dark-colored solar modules in large numbers, an artificial albedo (reflectivity) change is expected on that surface. Because of the heat exchange between these modules and the air surrounding them due to albed...
Modelling, simulation and trajectory control of an airborne wind energy system for wind power generation
Rashid, Muhammad Rameez; Prach, Anna; Sustainable Environment and Energy Systems (2022-9-1)
Significant progress is being made in developing creative and cost-effective technologies to reduce our dependence on fossil fuels and enable the transition toward renewable energies. Airborne Wind Energy (AWE) systems refer to the generation of useable power by airborne devices such as kites, wing gliders, parafoils, and drones. They can reach higher altitudes and leverage an abundant and previously unused wind resource than a conventional wind turbine. On the other hand, they need far less material to tra...
Improved wind power forecasting using combination methods
Köksoy, Ceyda Er; Birtürk, Ayşe Nur; Karagöz, Pınar; Department of Computer Engineering (2015)
Wind is an important renewable energy source to produce electricity thanks to its reliable, omnipresent and economically feasible characteristics and it has a growing proportion in overall energy production worldwide. However, integration of the generated wind power into the existing transmission grid is an issue due to inherently volatile and intermittent behavior of wind. Moreover, the power plant owners need reliable information about day-ahead power production for market operations. Therefore, wind powe...
Assessment of renewable energy based micro-grids for small communities
Sadati, S.M. Sajed; Taylan, Onur; Sustainable Environment and Energy Systems (2016-7)
Deploying renewable energy systems to supply electricity faces many challenges related to cost and variability of the renewable resources. One possible solution to these challenges is to hybridize renewable energy systems with conventional power systems and include energy storage systems. In this study, the feasibility analysis of two cases for electricity generation systems as (i) photovoltaic (PV)-battery-pumped hydro system (PHS) and (ii) PV-wind-battery are presented as a Renewable Energy Micro-Gr...
Citation Formats
E. Demirezen and B. G. Akınoğlu, “Impacts of a photovoltaic power plant for possible heat island effect,” presented at the International Conference on Photovoltaic Technologies (PVCon), Middle E Tech Univ, Culture & Convent Ctr, Ankara, TURKEY, 2018, Accessed: 00, 2020. [Online]. Available: