Model updating of nonlinear structures from measured FRFs

2016-12-01
Canbaloglu, Guvenc
Özgüven, Hasan Nevzat
There are always certain discrepancies between modal and response data of a structure obtained from its mathematical model and experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental measurements in order to have a more accurate model. Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures, unless they work in linear range. Well-established frequency response function (FRF) based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRF5) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRF5 experimentally by using low level forcing. In this study a method (named as Pseudo Receptance Difference (PRD) method) is presented to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. PRD method, calculates linear FRFs of a nonlinear structure by using FRF5 measured at various forcing levels, and simultaneously identifies all nonlinearities in the system. Then, any model updating method can be used to update the linear part of the mathematical model. In this present work, PRD method is used to predict the linear FRFs from measured nonlinear FRF5, and the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the nonlinear structure. The proposed method is validated with different case studies using nonlinear lumped single-degree of freedom system, as well as a continuous system. Finally, a real nonlinear T-beam test structure is used to show the application and the accuracy of the proposed method. The accuracy of the updated nonlinear model of the test structure is demonstrated by comparing the calculated and measured nonlinear FRFs of the test structure at several different forcing levels.
MECHANICAL SYSTEMS AND SIGNAL PROCESSING

Suggestions

A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
Identification of structural non-linearities using describing functions and the Sherman-Morrison method
Ozer, Mehmet Bulent; Özgüven, Hasan Nevzat; Royston, Thomas J. (Elsevier BV, 2009-01-01)
In this study, a new method for type and parametric identification of a non-linear element in an otherwise linear structure is introduced. This work is an extension of a previous study in which a method was developed to localize non-linearity in multi-degree of freedom systems and to identify type and parameters of the non-linear element when it is located at a ground connection of the system. The method uses a describing function approach for representing the non-linearity in the structure. The describing ...
A novel two-step pseudo-response based adaptive harmonic balance method for dynamic analysis of nonlinear structures
Sert, Onur; Ciğeroğlu, Ender (Elsevier BV, 2019-09-01)
Harmonic balance method (HBM) is one of the most popular and powerful methods, which is used to obtain response of nonlinear vibratory systems in frequency domain. The main idea of the method is to express the response of the system in Fourier series and converting the nonlinear differential equations of motion into a set of nonlinear algebraic equations. System response can be obtained by solving this nonlinear equation set in terms of the unknown Fourier coefficients. The accuracy of the solution is great...
Localization and identification of structural nonlinearities using cascaded optimization and neural networks
Koyuncu, A.; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2017-10-01)
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then local...
Quantitative measure of observability for linear stochastic systems
Subasi, Yuksel; Demirekler, Mübeccel (Elsevier BV, 2014-06-01)
In this study we define a new observability measure for stochastic systems: the mutual information between the state sequence and the corresponding measurement sequence for a given time horizon. Although the definition is given for a general system representation, the paper focuses on the linear time invariant Gaussian case. Some basic analytical results are derived for this special case. The measure is extended to the observability of a subspace of the state space, specifically an individual state and/or t...
Citation Formats
G. Canbaloglu and H. N. Özgüven, “Model updating of nonlinear structures from measured FRFs,” MECHANICAL SYSTEMS AND SIGNAL PROCESSING, pp. 282–301, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36743.