Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Explicitly Decoupled Variational Multiscale Method for Incompressible, Non-Isothermal Flows
Date
2015-01-01
Author
Belenli, Mine A.
Kaya Merdan, Songül
Rebholz, Leo G.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
We propose, analyze and test a fully decoupled, but still unconditionally stable and optimally accurate, variational multiscale stabilization (VMS) for incompressible, non-isothermal fluid flows. The VMS stabilization is implemented as a post-processing step, and thus can be used with existing codes. A full numerical analysis of the method is given that proves unconditional stability with respect to the timestep size, and that the method converges optimally in both time and space. Numerical tests are provided that confirm the theoretical results, and test the method on a benchmark problem for Marsigli flow.
Subject Keywords
Applied Mathematics
,
Numerical Analysis
,
Computational Mathematics
URI
https://hdl.handle.net/11511/36771
Journal
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
DOI
https://doi.org/10.1515/cmam-2014-0026
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
An analysis of a linearly extrapolated BDF2 subgrid artificial viscosity method for incompressible flows
Demir, Medine (Elsevier BV, 2020-10-01)
This report extends the mathematical support of a subgrid artificial viscosity (SAV) method to simulate the incompressible Navier-Stokes equations to better performing a linearly extrapolated BDF2 (BDF2LE) time discretization. The method considers the viscous term as a combination of the vorticity and the grad-div stabilization term. SAV method introduces global stabilization by adding a term, then anti-diffuses through the extra mixed variables. We present a detailed analysis of conservation laws, includin...
A finite element variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Society for Industrial & Applied Mathematics (SIAM), 2005-01-01)
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky ...
A nested iterative scheme for computation of incompressible flows in long domains
Manguoğlu, Murat; Tezduyar, Tayfun E.; Sathe, Sunil (Springer Science and Business Media LLC, 2008-12-01)
We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.
A unified approach for the formulation of interaction problems by the boundary element method
Mengi, Y; Argeso, H (Wiley, 2006-04-30)
A unified formulation is presented, based on boundary element method, in a form suitable for performing the interaction analyses by substructure method for solid-solid and soil-structure problems. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices simultaneously at a single step in terms of system matrices of the boundary element method without solving any special problem, such as, unit displacement or load problem, as required in conventional methods....
A tearing-based hybrid parallel sparse linear system solver
NAUMOV, Maxim; Manguoğlu, Murat; SAMEH, Ahmed (Elsevier BV, 2010-09-15)
We propose a hybrid sparse system solver for handling linear systems using algebraic domain decomposition-based techniques. The solver consists of several stages. The first stage uses a reordering scheme that brings as many of the largest matrix elements as possible closest to the main diagonal. This is followed by partitioning the coefficient matrix into a set of overlapped diagonal blocks that contain most of the largest elements of the coefficient matrix. The only constraint here is to minimize the size ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. Belenli, S. Kaya Merdan, and L. G. Rebholz, “An Explicitly Decoupled Variational Multiscale Method for Incompressible, Non-Isothermal Flows,”
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS
, pp. 1–20, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36771.