Reduction of scouring depth by using inclined piers

The aim of this experimental study is to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths. Duration of 4 h was used in the experiments for each run. Scour depths were measured at four different points around the piers. The depths of local scour around inclined piers were found to be substantially smaller than the scour depths around vertical piers. Dimensional and nondimensional curves were developed and presented to show the variation of scour depth with relevant parameters obtained in the dimensional analysis. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses, to be used for predicting local scour depths around vertical and (or) inclined piers in uniform and (or) nonuniform sediments. Normalized scour depths measured around the vertical piers in the present study were compared with those computed by an equation suggested by Melville and Sutherland (1988), and also by an equation developed in the present study.


Reliability-based evaluation of scouring around dual bridge piers
Yilmaz, Meric; Çalamak, Melih; Yanmaz, Ali Melih (Croatian Association of Civil Engineers, 2019-01-01)
The causes of uncertainty involved in temporal variation of the depth of cavern formation due to clear water scouring at dual piers with tandem arrangement are identified in this study. In an example, the probability of failure induced by scouring around dual piers is estimated for various pier spacing using probabilistic analysis. The effects of changes in the coefficient of variation of probabilistic scouring variables and probability distributions on the probability of the loss of stability, are also inv...
Temporal variation of clear water scour at cylindrical bridge piers
Yanmaz, Ali Melih (Canadian Science Publishing, 2006-08-01)
Computation of temporal variation of clear water scour is important for the design of bridge pier footings. Previous studies indicated that very long flow duration was needed to achieve equilibrium scouring situations. However, the corresponding durations in the prototype conditions may yield considerably larger values than time-to-peak of the design flood. Therefore, there is a need to estimate the temporal variation of scour depth. This study deals with the development of a new semiempirical method for te...
Analytical formulation of maximum length limits of integral bridges on cohesive soils
Dicleli, Murat (Canadian Science Publishing, 2005-08-01)
This paper presents an analytical approach for predicting the length limits of integral bridges built on cohesive soils based on the flexural strength of the abutments and the low cycle fatigue performance of the steel H-piles at the abutments under cyclic thermal loading. First, H-piles that can accommodate large inelastic deformations are determined considering their local buckling instability. Then, a damage model is used to determine the maximum cyclic deformations that such piles can sustain. Next, non...
Temporal scour development at bridge abutments with a collar
Kumcu, Serife Yurdaguel; Goegues, Mustafa; Koekpinar, Mehmet Ali (Canadian Science Publishing, 2007-04-01)
This study investigated the reduction of scour around a vertical-wall bridge abutment using rectangular collars for clear-water flow conditions over uniform sediment particles in a laboratory flume. Collars of different sizes and at different elevations were tested to determine the temporal variation of scour depth around the bridge abutment. The development of scour around the abutments with and without a collar for a time period of 6 h was studied, and observed scour depths were compared. Experimental res...
Reliability-based optimization of river bridges using artificial intelligence techniques
Turan, K. Hakan; Yanmaz, Ali Melih (Canadian Science Publishing, 2011-10-01)
Proper bridge design is based on joint consideration of structural, hydraulic, and geotechnical conformities. An optimization-based methodology has been developed to obtain appropriate dimensions of a river bridge to meet these aspects. Structural and geotechnical design parts use a statistically-based artificial neural network (ANN) model. Therefore, relevant data were collected from many bridge projects and analyzed to form a matrix. Artificial neural network architectures are used in the objective functi...
Citation Formats
Z. Bozkuş, “Reduction of scouring depth by using inclined piers,” CANADIAN JOURNAL OF CIVIL ENGINEERING, pp. 1621–1630, 2010, Accessed: 00, 2020. [Online]. Available: