Numerical Methods

2009
Söylemez, Eres

Suggestions

Numerical method for optimizing stirrer configurations
Schafer, M; Karasözen, Bülent; Uludağ, Yusuf; YAPICI, KEREM; Uğur, Ömür (2005-12-15)
A numerical approach for the numerical optimization of stirrer configurations is presented. The methodology is based on a parametrized grid generator, a flow solver, and a mathematical optimization tool, which are integrated into an automated procedure. The flow solver is based on the discretization of the Navier-Stokes equations by means of the finite-volume method for block-structured, boundary-fitted grids with multi-grid acceleration and parallelization by grid partitioning. The optimization tool is an ...
Numerical methods for multiphysics flow problems
Belenli Akbaş, Mine; Kaya Merdan, Songül; Rebholz, Leo G.; Department of Mathematics (2016)
In this dissertation, efficient and reliable numerical algorithms for approximating solutions of multiphysics flow problems are investigated by using numerical methods. The interaction of multiple physical processes makes the systems complex, and two fundamental difficulties arise when attempting to obtain numerical solutions of these problems: the need for algorithms that reduce the problems into smaller pieces in a stable and accurate way and for large (sometimes intractable) amount of computational resou...
Data Structures
Çiçekli, Fehime Nihan(2010)
Classification of data structures, space and time considerations. Linked lists,stacks and queues, tree structures, graphs. Array and pointer based implementations. Recursive applications.
Numerical Design of Testing Functions for the Magnetic-Field Integral Equation
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-04-15)
We present a novel numerical approach to design testing functions for the magnetic-field integral equation (MFIE). Enforcing the compatibility of matrix equations derived from MFIE and the electric-field integral equation (EFIE) for the same problem, testing weights for MFIE are determined on given templates of testing functions. The resulting MFIE systems produce more accurate results that the conventional MFIE implementations, without increasing the number of iterations and processing time. The design pro...
Numerical studies of the electronic properties of low dimensional semiconductor heterostructures
Dikmen, Bora; Tomak, Mehmet; Department of Physics (2004)
An efficient numerical method for solving Schrödinger's and Poisson's equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well wit...
Citation Formats
E. Söylemez, “Numerical Methods,” 00, 2009, Accessed: 00, 2020. [Online]. Available: https://ocw.metu.edu.tr/course/view.php?id=32.