Numerical Design of Testing Functions for the Magnetic-Field Integral Equation

Karaosmanoglu, Bariscan
Ergül, Özgür Salih
We present a novel numerical approach to design testing functions for the magnetic-field integral equation (MFIE). Enforcing the compatibility of matrix equations derived from MFIE and the electric-field integral equation (EFIE) for the same problem, testing weights for MFIE are determined on given templates of testing functions. The resulting MFIE systems produce more accurate results that the conventional MFIE implementations, without increasing the number of iterations and processing time. The design procedure can also be used for more general cases, e.g., for dielectric objects, where the behavior of different integral equations have been well studied and identified.


Improving the Accuracy of MFIE and CFIE by Using Numerically Designed Testing Functions
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-07-01)
We present a novel approach for improving the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) by using numerically designed testing functions. The compatibility of the MFIE and CFIE systems with the corresponding one derived from the electric-field integral equation (EFIE) is used to determine testing weights in given templates of testing directions. The designed testing functions lead to more accurate solutions in comparison to the standard discretiza...
Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns
Malas, Tahir; Ergül, Özgür Salih; Gurel, Levent (2007-11-09)
We propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the neat-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larg...
Solving Fokker-Planck Equation By Two-Dimensional Differential Transform
Cansu Kurt, Ümmügülsüm; Ozkan, Ozan (2011-07-29)
In this paper, we implement a reliable algorithm to obtain exact solutions for Fokker-Planck equation and some similar equations. The approach rests mainly on two dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions are obtained easily without linearizing the problem. Some illustrative examples are given to demonstrate the effectivene...
Generalisation of the Lagrange multipliers for variational iterations applied to systems of differential equations
ALTINTAN, DERYA; Uğur, Ömür (2011-11-01)
In this paper, a new approach to the variational iteration method is introduced to solve systems of first-order differential equations. Since higher-order differential equations can almost always be converted into a first-order system of equations, the proposed method is still applicable to a wide range of differential equations. This generalised approach, unlike the classical method, uses restricted variations only for nonlinear terms by generalising the Lagrange multipliers. Consequently, this allows us t...
Numerical Constructions of Testing Functions for Improving the Accuracy of MFIE and CFIE in Multi-Frequency Applications
Karaosmanoglu, Bariscan; Altinoklu, Askin; Ergül, Özgür Salih (EMW Publishing, 2016-01-01)
We present a new approach based on numerical constructions of testing functions for improving the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) with low-order discretizations. Considering numerical solutions, testing functions are designed by enforcing the compatibility of the MFIE systems with the accurate coefficients obtained by solving the electric-field integral equation (EFIE). We demonstrate the accuracy improvements on scattering problems, wh...
Citation Formats
B. Karaosmanoglu and Ö. S. Ergül, “Numerical Design of Testing Functions for the Magnetic-Field Integral Equation,” 2016, Accessed: 00, 2020. [Online]. Available: