Mixed-monolayer of N-hydroxysuccinimide-terminated cross-linker and short alkanethiol to improve the efficiency of biomolecule binding for biosensing

2018-09-01
Sadik, Demet Ataman
Eksi-Kocak, Haslet
Ertaş, Gülay
BOYACI, İSMAİL HAKKI
MUTLU, MEHMET
The goal of this study was to use a novel surface chemistry for modifying gold surfaces to decrease the steric hindrance, minimize the nonspecific bindings while providing directed immobilization of proteins for advancing the transducer property and to provide a biosensing platform for surface plasmon resonance (SPR) applications. Mixed self-assembled monolayers (mSAMs) were prepared using 3,3-Dithiodipropionic acid di (N-hydroxysuccinimide ester) (DSP) and 6-mercapto-1-hexanol (MCH) and the selected model proteins bovine serum albumin (BSA) and lysozyme were tested for binding efficiency. First, binding of these two proteins at constant concentration to different DSP:MCH mSAMs were compared to deduce the best molar ratio for forming mSAM using a continuous flow system coupled to SPR. Coincidently the maximum protein binding DSP:MCH mSAM were the same for both proteins. The change in Response Unit (RU) signal due to protein binding between DSP SAM and maximum protein binding DSP:MCH mSAM for lysozyme binding was more in comparison to BSA binding. Second, the effect of BSA and lysozyme concentration on binding efficiency to maximum protein binding DSP:MCH mSAM were compared and discussed. Lysozyme and BSA were shown to reach saturations on the same monolayer at concentrations of 5.7x10(-5) and 8.96x10(-6) [M] respectively, hence the molar ratio for limit concentrations is 6:1. The DSP SAM, MCH SAM, and DSP:MCH mSAMs where maximum and minimum protein binding occurs were also characterized with XPS and Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Blank gold surface, maximum protein binding DSP:MCH mSAM and BSA immobilized DSP:MCH mSAM on gold surface were also investigated utilizing tapping mode AFM.
SURFACE AND INTERFACE ANALYSIS

Suggestions

Mixed carboranethiol self-assembled monolayers on gold surfaces
Yavuz, Adem; Sohrabnia, Nima; Yılmaz, Ayşen; Danışman, Mehmet Fatih (2017-08-15)
Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (1-carboranethiol, 01) the surface plane, in order to investigate the effect of dipole moment orientation on the fil...
Separation of chromate and borate anions by polymer enhanced ultrafiltration from aqueous solutions employing specifically tailored polymers
Oktar Doğanay, Ceren; Özbelge, H. Önder; Department of Chemical Engineering (2007)
In this study two polychelatogens for borate and a polyelectrolyte for chromate retention (R) were designed for investigating the effect of pH and loading (g metal /g polymer) on the separation performances of the synthesized polymers using continuous polymer enhanced ultrafiltration. Increase in pH increased the retention of borate for all of the synthesized polymers. Decrease in the loading resulted in an enhancement in boron retention with PNSM and PNSL. When COP was utilized, retentions remained almost ...
Influence of oxygen plasma modification on surface free energy of PMMA films and cell attachment
Ozcan, Canturk; Zorlutuna, Pinar; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2007-10-04)
For any biomaterial placed into a biological medium, the surface properties of the material, such as porosity, crystallinity, presence and distribution of electrical charge and functional groups are very critical parameters that determine the acceptance or rejection of the material. Applications, especially tissue engineering require some surface modifications at the molecular level without disturbing the bulk properties of the implants in order to enhance the cell attachment on the material. An appropriate...
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
MAVİŞ, BORA; Demirtas, Tolga T.; GÜMÜŞDERELİOĞLU, MENEMŞE; Gündüz, Güngör; Colak, Uner (2009-10-01)
Immersion of electrospun polycaprolactone (PCL) nanofiber mats in calcium phosphate solutions similar to simulated body fluid resulted in deposition of biomimetic calcium phosphate layer on the nanofibers and thus a highly bioactive novel scaffold has been developed for bone tissue engineering. Coatings with adequate integrity, favorable chemistry and morphology were achieved in less than 6 h of immersion. In the coating solutions, use of lower concentrations of phosphate sources with respect to the literat...
Preparation and characterization of titania-silica-gold thin films over ito substrates for laccase immobilization
Eker, Zeynep; Karakaş, Gürkan; Department of Micro and Nanotechnology (2009)
The aim of this study was to immobilize the redox enzyme laccase over TiO2-SiO2-Au thin film coated ITO glass substrates in order to prepare electrochemically active surfaces for biosensor applications. Colloidal TiO2-SiO2-Au solution was synthesized by sol-gel route and thin film was deposited onto the substrates by dipcoating method. The cysteamine was utilized as a linker for immobilization of enzyme covalently through gold active sites. Preliminary studies were conducted by using invertase as model enzy...
Citation Formats
D. A. Sadik, H. Eksi-Kocak, G. Ertaş, İ. H. BOYACI, and M. MUTLU, “Mixed-monolayer of N-hydroxysuccinimide-terminated cross-linker and short alkanethiol to improve the efficiency of biomolecule binding for biosensing,” SURFACE AND INTERFACE ANALYSIS, pp. 866–878, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37118.