Calculation of the Resonant Frequencies in the Vicinity of the Transition in Quartz

2015-07-01
The transition (847 K) in quartz is investigated using the temperature dependence of the resonant frequency and of the lattice constant which are correlated by means of the mode Gruneisen parameter. By determining the mode Gruneisen parameter, the resonant frequencies are predicted in the vicinity of the transition in quartz. This calculation is extended to low temperatures (down to about , and the resonant frequencies are predicted at low temperatures using the lattice parameter data for quartz. Predictions indicate that the method of calculating the resonant frequencies using the lattice parameter data is satisfactory, and it can be applied to some other crystalline systems.
INTERNATIONAL JOURNAL OF THERMOPHYSICS

Suggestions

Calculation of the soft mode frequency for the alpha beta transition in quartz
Yurtseven, Hasan Hamit (null; 2015-09-18)
The Raman frequencies of the lattice modes (147 cm-1 and 207 cm-1 are analyzed for the α-β transition in quartz according to a power-law formula with the critical exponent by using the experimental data. The temperature dependence of the Raman frequency is associated with the order parameter (polarization P) for this transition in the quartz crystal. The damping constant of the lattice modes studied here is calculated using the Raman frequencies at various temperatures for the α-β transition in quartz (Tc =...
Calculation of the tilt angle and susceptibility for the alpha-beta transition in quartz using a mean field model
Yurtseven, Hasan Hamit; Ates, S. (World Scientific Pub Co Pte Lt, 2017-03-30)
Tilt angle (order parameter) and the susceptibility are calculated as a function of temperature for the alpha-beta transition in quartz using a Landau phenomenological model. The tilt angle as obtained from the model is fitted to the experimental data from the literature and the temperature dependence of the tilt angle susceptibility is predicted close to the alpha-beta transition in quartz. Our results show that the mean field model explains the observed behavior of the alpha-beta phase transition in quart...
CALCULATION OF THE DAMPING CONSTANT AND ACTIVATION ENERGY FOR RAMAN MODES IN (NH4)(2)SO4
Yurtseven, Hasan Hamit; Kiraci, A. (World Scientific Pub Co Pte Lt, 2011-06-20)
The temperature dependence of the damping constant is calculated for various Raman modes in (NH4)(2)SO4 by the expressions derived from the soft mode hard mode coupling model and the energy fluctuation model. The expressions for the damping constant are fitted to the measured Raman bandwidths and then the activation energies are extracted, which are equal to similar to 0.2 eV for the Raman modes studied. The damping constant of a soft mode is also calculated and the activation energy (similar to 0.1 eV) is ...
Calculation of the damping constant and the order parameter for the lattice mode in ferroelectric PbTiO3
Kiraci, A.; Yurtseven, Hasan Hamit (2013-07-25)
The temperature dependences of the damping constant and the order parameter are calculated for the lattice mode of E (1TO) in PbTiO3 using the experimental data by the pseudospin- phonon coupled model and the enrgy fluctuation model. Calculation of the damping constant of soft mode is performed in the temperature range of 400- 490 degrees C close to the ferroelectric- paraelectric transition (T-C= 493 degrees C) in PbTiO3. By relating the frequency to the order parameter, the temperature dependence of the R...
Calculation of the Raman Linewidths of Lattice Modes Close to the alpha-beta Transition in Quartz
Lider, Mustafa Cem; Yurtseven, Hasan Hamit (Walter de Gruyter GmbH, 2012-12-01)
The Raman frequencies of the lattice modes (147 cm(-1) and 207 cm(-1)) are analyzed for the alpha-beta transition in quartz according to a power-law formula with the critical exponent by using the experimental data. The temperature dependence of the Raman frequency is associated with the order parameter (polarization P) for this transition in the quartz crystal.
Citation Formats
M. C. Lider and H. H. Yurtseven, “Calculation of the Resonant Frequencies in the Vicinity of the Transition in Quartz,” INTERNATIONAL JOURNAL OF THERMOPHYSICS, pp. 1585–1597, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37295.