Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Integrated design and optimization of a direct drive axial flux permanent magnet generator for a tidal turbine
Date
2010-04-01
Author
Keysan, Ozan
Mueller, M.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
170
views
0
downloads
Cite This
The C-GEN is a novel topology of direct drive air-core permanent magnet generator being developed at University of Edinburgh [1]. The topology has many benefits such as; absence of cogging torque, reduced mass and ease of manufacturing. A 20 kW prototype test rig and 15kW machine for a wind turbine has been manufactured and tested previously. Initial sizing studies for wind turbines indicate that the C-GEN concept will be up to 50% lighter than conventional iron cored PM direct drive generators [1]. In addition to the applications wind turbines, C-GEN technology can also be implemented for marine energy power take-off systems. To investigate that, a feasibility study is being undertaken in collaboration with two wave and two tidal energy companies. In this paper, design and optimization method of an axial flux permanent magnet generator for a tidal energy converter device has been investigated. An analytical optimization tool is designed that combines electromagnetic, structural and thermal aspects of the machine design. A genetic algorithm optimization method has been utilized based on the operation conditions of generator and pre-defined constraints on dimensions and material limitations. The output of the analytical design tool is compared with the electromagnetic FEA simulations. The results showed that proposed analytical calculation method is consistent with FEA results
Subject Keywords
Direct drive
,
Genetic algorithm optimization
,
Tidal energy
,
Integrated design
,
Permanent magnet generator
URI
https://hdl.handle.net/11511/37333
Journal
Renewable Energy and Power Quality Journal
DOI
https://doi.org/10.24084/repqj08.649
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Axial flux permanent magnet machine with novel flat winding made of conductor sheet
Çakal, Gökhan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2020-10-13)
This thesis proposes a novel winding topology, called flat winding, as an alternative to the conventional windings with stranded round wires for electric machines. It is made of a thin conductor sheet by industrial automation tools such as stamping press, laser, or water jet. Since these tools are widely used in the production of electric machines, the flat winding topology enjoys the advantage of the ease of manufacturing without significant modification on the production line. Superior current ratings, sh...
Linear generator for direct drive wave energy applications
Hodgins, Neil; Keysan, Ozan; McDonald, Alasdair; Mueller, Markus (2010-12-06)
A 50kW linear permanent magnet generator with a novel topology has been designed and built. The main significance of the generator topology is that there is no attractive force between the stator and permanent magnet translator. The magnetic force between the magnets is reacted within a self supporting structure. The lack of magnetic forces closing the airgap and the modular nature of the generator topology makes the manufacture and assembly of the generator easier than a conventional iron-cored permanent m...
Designing the C-GEN lightweight direct drive generator for wave and tidal energy
Keysan, Ozan; McDonald, Alasdair; Hodgins, Neil; Shek, Jonathan (Institution of Engineering and Technology (IET), 2012-05-01)
The C-GEN is a novel permanent magnet generator aimed at reducing overall system mass in direct drive power takeoff applications. The design of a C-GEN generator requires the combination of electromagnetic, structural and thermal models. Models used in the development of design tools applicable to both rotary and linear C-GEN generators are described in this study. The design tool is verified with the experiment results obtained from a 15 kW prototype. A genetic optimisation algorithm is developed combining...
Analysis and Fault Tolerant Control of a Five-Phase Axial Flux Permanent Magnet Synchronous Machine
Bayazıt, Göksenin Hande; Keysan, Ozan; Department of Electrical and Electronics Engineering (2021-9-06)
This study investigates the fault-tolerance capability of an air-cored, axial flux, five-phase permanent magnet synchronous machine. The air-cored stator is designed by adopting a novel winding topology that is called flat winding. The coils of flat winding are made by bending and grouping one within another of the flat wires made of a laser-cut thin aluminum sheet. This topology provides superior current ratings, better cooling performance, and a robust structure for the stator. As the coils are covered w...
Design optimization of a fully integrated charge-pump with LC tank oscillator for ultra-low voltage energy harvesting
Jayaweera, H. M. P. C.; Muhtaroglu, Ali (2017-01-01)
Model based optimization of a novel integrated interface circuit topology is presented for low voltage DC-DC step-up conversion. A cross-coupled charge pump is implemented in standard 0.18 mu m CMOS technology using an integrated LC tank oscillator to enable a compact, low cost, self-starting solution with maximum efficiency at ultra-low input voltage levels available from embedded micro-power generators. The voltage doubling oscillator can start up with input as low as 0.10 V. Full system can step 0.2 V up...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Keysan and M. Mueller, “Integrated design and optimization of a direct drive axial flux permanent magnet generator for a tidal turbine,”
Renewable Energy and Power Quality Journal
, pp. 1297–1302, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37333.