Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermoluminescence properties of Al doped ZnO nanoparticles
Date
2018-08-15
Author
IŞIK, MEHMET
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
ZnO nanoparticles doped with aluminum (AZO nanoparticles) were investigated using low temperature thermoluminescence (TL) and structural characterization experiments. TL experiments were performed on AZO nanoparticles in the temperature range of 10-300 K. TL curve presented one intensive peak around 123 K and two overlapped peaks to intensive peak around 85 and 150 K for heating rate of 0.1 K/s. Curve fitting and initial rise methods were used to find the activation energies of associated trapping centers. Analyses resulted in the presence of three centers at 0.05, 0.08 and 0.17 eV with peak maximum temperatures (T-m) of 86.2, 121.5 and 147.1 K, respectively. TL experiments were expanded using different heating rates between 0.1 K/s and 0.5 K/s. Behavior of revealed traps was investigated using an experimental technique called as T-m - T-stop method. It was seen that traps are quasi-continuously distributed within the band gap. Structural properties were studied using x-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy experiments.
Subject Keywords
Process Chemistry and Technology
,
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/37357
Journal
CERAMICS INTERNATIONAL
DOI
https://doi.org/10.1016/j.ceramint.2018.04.241
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum
Kalem, Volkan; Çam, İbrahim; Timucin, Muharrem (Elsevier BV, 2011-05-01)
PZT based piezoelectric ceramics obtained by doping with various levels of Sr2+ and La3+, designated as PSLZT, were prepared by conventional processing techniques. The effects of Sr2+ and La3+ additions, and that of the Zr/Ti ratio on microstructure, on phase constitution, and on the dielectric and piezoelectric properties were investigated. XRD data revealed that all PSLZT compositions had perovskite structure in which increasing Sr and/or decreasing Zr/Ti ratio increased the tetragonality. In PSLZT cerami...
Catalytic effect of alkaline earth oxides on carbothermic formation of hexagonal boron nitride
ÇAMURLU, HASAN ERDEM; Topkaya, Yavuz Ali; SEVİNÇ, NACİ (Elsevier BV, 2009-08-01)
Effect of MgO, CaO and BaO on carbothermic formation of hexagonal boron nitride (h-BN) was investigated. B(2)O(3-)C mixtures containing alkaline earth oxide additives were reacted at 1500 degrees C for 30-120 min in nitrogen atmosphere. Formed phases in the reaction products were determined by powder-XRD analyses, and amounts of the constituents were determined by chemical analyses. Particle size and morphology of the formed h-BN powders were examined by FESEM and particle size distributions were determined...
Facile control of hydroxyapatite particle morphology by utilization of calcium carbonate templates at room temperature
Oral, Çağatay M.; Çalışkan, Arda; Kapusuz, Derya; Ercan, Batur (Elsevier BV, 2020-09-01)
Hydroxyapatite (HAp, Ca-10(PO4)(6)(OH)(2)) particles are widely used in orthopedic applications due to their chemical resemblance to the inorganic component of bone tissue. Since physical and chemical properties of HAp particles influence bone regeneration, various synthesis techniques were developed to precisely control the particle properties. However, most of these techniques required high reaction temperatures, which limited the spectrum of obtained HAp particle morphologies. In this study, ellipsoidal,...
Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application
Bezgin, Buket; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2008-09-01)
Poly(9-fluorenecarboxylic acid) (PFCA) was synthesized by electrochemical oxidation of 9-fluorenecarboxylic acid (FCA) using a mixture of nitromethane and boron trifluoride diethyl etherate as the solvent and tetrabutylammonium tetrafluoroborate as the supporting electrolyte. An insoluble and conducting brownish-orange film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 1.15 V. Characterization of the polymer film has been carried out using Four...
Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties
Yildirim, Ozlem Altintas; Ünalan, Hüsnü Emrah; Durucan, Caner (Wiley, 2013-03-01)
Synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles through precipitation method has been reported. The synthesis was conducted at room temperature and no subsequent thermal treatment was applied. ZnO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fourier transmission infrared spectroscopy (FTIR), and ultraviolet-visible (UVVis) spectroscopy. Detailed crystallographic investigation was accomplished through ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. IŞIK and N. Hasanlı, “Thermoluminescence properties of Al doped ZnO nanoparticles,”
CERAMICS INTERNATIONAL
, pp. 13929–13933, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37357.