Exciton related nonlinear optical properties of a spherical quantum dot

2015-11-01
Aksahin, E.
Unal, V. Ustoglu
Tomak, Mehmet
The nonlinear optical properties of an exciton in a spherical quantum dot (QD) is studied analytically. The nonlinear optical coefficients are calculated within the density matrix formalism. The electronic problem is solved within the effective mass approximation. The contributions from the competing effects of the confinement, the Coulomb interaction, and the applied electric field are calculated and compared with each other. We have made no assumptions about the strength of the confinement. We concentrate the effect of the Coulomb interaction. Our results may provide an input for optimization of the nonlinear optical coefficients.
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES

Suggestions

Interacting electrons in a 2D quantum dot
Akman, N; Tomak, Mehmet (1999-04-01)
The exact numerical diagonalization of the Hamiltonian of a 2D circular quantum dot is performed for 2, 3, and 4 electrons. The results an compared with those of the perturbation theory. Our numerical results agree reasonably well for small values of the dimensionless coupling constant lambda = a/a(B) where a is the dot radius and a(B) is the effective Bohr radius. Exact diagonalization results are compared with the classical predictions, and they are found to be almost coincident for large lambda values.
Excitonic effects on the nonlinear optical properties of small quantum dots
KARABULUT, İBRAHİM; Safak, H.; Tomak, Mehmet (IOP Publishing, 2008-08-07)
The excitonic effects on the nonlinear optical properties of small quantum dots with a semiparabolic confining potential are studied under the density matrix formalism. First, within the framework of the strong confinement approximation, we present the excitonic states and then calculate the excitonic effects on the nonlinear optical properties, such as second harmonic generation, third harmonic generation, nonlinear absorption coefficient and refractive index changes. We find the explicit analytical expres...
Nonlinear optical properties of semiconductor heterostructures
Yıldırım, Hasan; Tomak, Mehmet; Department of Physics (2006)
The nonlinear optical properties of semiconductor heterostructures, such as GaAsAl/GaAs alloys, are studied with analytic and numerical methods on the basis of quantum mechanics. Particularly, second and third-order nonlinear optical properties of quantum wells described by the various types of confining potentials are considered within the density matrix formalism. We consider a Pöschl-Teller type potential which has been rarely considered in this area. It has a tunable asymmetry parameter, making it a goo...
Spin–orbit effects on the nonlinear optical properties of a quantum dot in simultaneous electric and magnetic fields
Aytekin, O.; Turgut, Sadi; Tomak, Mehmet (Elsevier BV, 2014-11)
We report on the nonlinear optical properties of a quantum dot including the Rashba spin-orbit interaction (RSOI) with external electric and magnetic fields. The effect of dot size is considered. We do not make any assumptions about the strength of the confinement. We use the numerical diagonalization of the Hamiltonian to determine the electronic structure. The confining potential is taken to be of the Woods-Saxon type. We find the effect of RSOI on nonlinear optical coefficients.
Nonlinear optical properties of a Woods-Saxon quantum dot under an electric field
AYTEKİN, ÖZLEM; Turgut, Sadi; Unal, V. Ustoglu; Aksahin, E.; Tomak, Mehmet (Elsevier BV, 2013-12-01)
A theoretical study of the effect of the confining potential on the nonlinear optical properties of two dimensional quantum dots is performed. A three-parameter Woods-Saxon potential is used within the density matrix formalism. The control of confinement by three parameters and an applied electric field gives one quite an advantage in studying their effects on the nonlinear properties. The coefficients investigated include the optical rectification, second and third-harmonic generation and the change in the...
Citation Formats
E. Aksahin, V. U. Unal, and M. Tomak, “Exciton related nonlinear optical properties of a spherical quantum dot,” PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, pp. 258–263, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37402.