Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonlinear optical properties of semiconductor heterostructures
Download
index.pdf
Date
2006
Author
Yıldırım, Hasan
Metadata
Show full item record
Item Usage Stats
344
views
102
downloads
Cite This
The nonlinear optical properties of semiconductor heterostructures, such as GaAsAl/GaAs alloys, are studied with analytic and numerical methods on the basis of quantum mechanics. Particularly, second and third-order nonlinear optical properties of quantum wells described by the various types of confining potentials are considered within the density matrix formalism. We consider a Pöschl-Teller type potential which has been rarely considered in this area. It has a tunable asymmetry parameter, making it a good candidate to investigate the effect of the asymmetry on the nonlinear optical properties. The calculated nonlinear quantities include nonlinear absorption coefficient, second-harmonic generation, optical rectification, third-harmonic generation and the intensity-dependent refractive index. The effects of the DC electric field on the corresponding nonlinearities are also studied. The results are in good agreement with the results obtained in other types of quantum wells, such as square and parabolic quantum wells. The effects of the Coulomb interaction among the electrons on the nonlinear intersubband absorption are considered within the rotating wave approximation. The result is applied to a Si-delta-doped, square quantum well in which the Coulomb interaction among the electrons are relatively important, since there has been no work on the nonlinear absorption spectrum of the Si-\delta-doped quantum well. The results are found to be new and interesting, especially when a DC electric field is included in the calculations.
Subject Keywords
Physics.
,
Quantum wells.
URI
http://etd.lib.metu.edu.tr/upload/12607438/index.pdf
https://hdl.handle.net/11511/16536
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Exciton related nonlinear optical properties of a spherical quantum dot
Aksahin, E.; Unal, V. Ustoglu; Tomak, Mehmet (2015-11-01)
The nonlinear optical properties of an exciton in a spherical quantum dot (QD) is studied analytically. The nonlinear optical coefficients are calculated within the density matrix formalism. The electronic problem is solved within the effective mass approximation. The contributions from the competing effects of the confinement, the Coulomb interaction, and the applied electric field are calculated and compared with each other. We have made no assumptions about the strength of the confinement. We concentrate...
Gravitational waves and gravitational memory
Korkmaz, Ali; Tekin, Bayram; Department of Physics (2018)
We study the gravitational waves produced by compact binary systems in the linear regime of massless general relativity and calculate the gravitational memory produced by these waves on a detector.
Environmental effects on quantum geometric phase and quantum entanglement
Günhan, Ali Can; Pak, Namık Kemal; Department of Physics (2008)
We investigate the geometric phase (GP) acquired by the states of a spin-1/2 nucleus which is subject to a static magnetic field. This nucleus as the carrier system of GP, is taken as coupled to a dissipative environment, so that it evolves non-unitarily. We study the effects of different characteristics of different environments on GP as nucleus evolves in time. We showed that magnetic field strength is the primary physical parameter that determines the stability of GP; its stability decreases as the magne...
Quantum Monte Carlo methods for fermionic systems : beyond the fixed-node approximation
Dugan, Nazım; Erkoç, Şakir; Department of Physics (2010)
Developments are made on the quantum Monte Carlo methods towards increasing the precision and the stability of the non fixed-node projector calculations of fermions. In the first part of the developments, the wavefunction correction scheme, which was developed to increase the precision of the di usion Monte Carlo (DMC) method, is applied to non fixed-node DMC to increase the precision of such fermion calculations which do not have nodal error. The benchmark calculations indicate a significant decrease of st...
Interacting electrons in a 2D quantum dot
Akman, N; Tomak, Mehmet (1999-04-01)
The exact numerical diagonalization of the Hamiltonian of a 2D circular quantum dot is performed for 2, 3, and 4 electrons. The results an compared with those of the perturbation theory. Our numerical results agree reasonably well for small values of the dimensionless coupling constant lambda = a/a(B) where a is the dot radius and a(B) is the effective Bohr radius. Exact diagonalization results are compared with the classical predictions, and they are found to be almost coincident for large lambda values.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Yıldırım, “Nonlinear optical properties of semiconductor heterostructures,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.