Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite

2012-03-01
Celik, Derya
Karahan, Senem
Zahmakiran, Mehmet
Özkar, Saim
Herein, we report the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite (Ca-10(OH)(2)(PO4)(6), HAP) and their catalytic use in the hydrolysis of hydrazine-borane, which attracts recent attention as promising hydrogen storage materials. Hydroxyapatite supported rhodium(0) nanoparticles were readily prepared by the hydrazine-borane reduction of rhodium(III)-exchanged hydroxyapatite in situ during the hydrolysis of hydrazine-borane at room temperature. Characterization of the resulting material by ICP-OES, TEM, SEM, EDX, XRD, XPS spectroscopies and N-2 adsorption-desorption technique, which shows the formation of rhodium(0) nanoparticles well dispersed on hydroxyapatite support. The catalytic performance of these new supported rhodium(0) nanopaiticles in terms of activity, lifetime and reusability was tested in the hydrolysis of hydrazine-borane. They were found to be highly active, long-lived and reusable catalyst in this important catalytic reaction even at low temperatures and high initial [substrate]/[catalyst] conditions. This report also includes the detailed kinetic study of the hydrolysis of hydrazine-borane catalyzed by hydroxyapatite supported rhodium(0) nanoparticles depending on the catalyst concentration, substrate concentration, and temperature. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2016-12-05)
We investigated the effect of various oxide supports on the catalytic activity of rhodium nanoparticles in hydrogen generation from the hydrolysis of ammonia borane. Among the oxide supports (CeO2, SiO2, Al2O3, TiO2, ZrO2, HfO2) ceria provides the highest catalytic activity for the rhodium(0) nanoparticles in the hydrolysis of ammonia borane. Rhodium(0) nanoparticles supported on nanoceria (Rh-0/CeO2) were prepared by the impregnation of rhodium(III) ions on the surface of ceria followed by their reduction ...
Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst
Rakap, Murat; Özkar, Saim (2010-04-01)
Previously being used as highly active catalyst in the hydrolysis of sodium borohydride, intrazeolite cobalt(0) nanoclusters were also employed as catalyst in the hydrolysis of ammonia-borane (H(3)NBH(3)). Intrazeolite cobalt(0) nanoclusters were found to be active catalyst in this hydrolysis reaction of ammonia-borane providing 5450 total turnovers at room temperature before deactivation. The results of the kinetic study shows that the catalytic hydrolysis of AB is first order with respect to the catalyst ...
Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane
Karahan, Senem; Özkar, Saim (2015-02-09)
Herein, we report the in situ generation, isolation and characterization of cobalt(0) nanoparticles, stabilized by poly(4-styrenesulfonic acid-co-maleic acid), PSSMA, and their catalytic activity in the hydrolysis of hydrazine borane (HB). Cobalt(0) nanoparticles having average particle size of 3.1 +/- 0.5 nm were prepared by in situ reduction of cobalt(II) chloride in aqueous solution of hydrazine borane in the presence of PSSMA, isolated magnetically from the catalytic reaction solution using a magnet, an...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime
DURAP, FEYYAZ; Zahmakiran, Mehmet; Özkar, Saim (2009-09-01)
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H(3)NBH(3)) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 +/- 1.2 nm were isolated from the solution and well c...
Citation Formats
D. Celik, S. Karahan, M. Zahmakiran, and S. Özkar, “Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 5143–5151, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37411.