Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite
Date
2012-03-01
Author
Celik, Derya
Karahan, Senem
Zahmakiran, Mehmet
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Herein, we report the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite (Ca-10(OH)(2)(PO4)(6), HAP) and their catalytic use in the hydrolysis of hydrazine-borane, which attracts recent attention as promising hydrogen storage materials. Hydroxyapatite supported rhodium(0) nanoparticles were readily prepared by the hydrazine-borane reduction of rhodium(III)-exchanged hydroxyapatite in situ during the hydrolysis of hydrazine-borane at room temperature. Characterization of the resulting material by ICP-OES, TEM, SEM, EDX, XRD, XPS spectroscopies and N-2 adsorption-desorption technique, which shows the formation of rhodium(0) nanoparticles well dispersed on hydroxyapatite support. The catalytic performance of these new supported rhodium(0) nanopaiticles in terms of activity, lifetime and reusability was tested in the hydrolysis of hydrazine-borane. They were found to be highly active, long-lived and reusable catalyst in this important catalytic reaction even at low temperatures and high initial [substrate]/[catalyst] conditions. This report also includes the detailed kinetic study of the hydrolysis of hydrazine-borane catalyzed by hydroxyapatite supported rhodium(0) nanoparticles depending on the catalyst concentration, substrate concentration, and temperature. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Hydrolysis
,
Hydrogen
,
Hydrazine-borane
,
Rhodium(0) nanoparticles
,
Hydroxyapatite
URI
https://hdl.handle.net/11511/37411
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2011.12.067
Collections
Department of Chemistry, Article