Improved p-ary codes and sequence families from Galois rings

2005-01-01
Ling, San
Özbudak, Ferruh
In this paper, a recent bound on some Weil-type exponential sums over Galois rings is used in the construction of codes and sequences. The bound on these type of exponential sums provides a lower bound for the minimum distance of a family of codes over F-p, mostly nonlinear, of length p(m+1) and size p(2) (.) p(m)((D-[D/p2])), where 1 <= D <= p(m/2). Several families of pairwise cyclically distinct p-ary sequences of period p(p(m) - 1) of low correlation are also constructed. They compare favorably with certain known p-ary sequences of period p(m) - 1. Even in the case p = 2, one of these families is slightly larger than the family Q(D) of [H-K, Section 8.8], while they share the same period and the same bound for the maximum non-trivial correlation.

Suggestions

Improved bounds on Weil sums over Galois rings and homogeneous weights
Ling, San; Özbudak, Ferruh (2006-01-01)
We generalize a recent improvement for the bounds of Weil sums over Galois rings of characteristic p(2) to Galois rings of any characteristic p(l). Our generalization is not as strong as for the case p(2) and we indicate the reason. We give a class of homogeneous weights, including the homogeneous weight defined by Constantinescu and Heise, and we show their relations. We also give an application of our improvements on the homogeneous weights of some codewords.
Improved p-ary codes and sequence families from Galois rings of characteristic p(2)
LİNG, SAN; Özbudak, Ferruh (Society for Industrial & Applied Mathematics (SIAM), 2006-01-01)
This paper explores the applications of a recent bound on some Weil-type exponential sums over Galois rings in the construction of codes and sequences. A family of codes over F-p, mostly nonlinear, of length p(m+1) and size p(2) (.) p(m(D-[D/p2])), where 1 <= D <= p(m/2), is obtained. The bound on this type of exponential sums provides a lower bound for the minimum distance of these codes. Several families of pairwise cyclically distinct p-ary sequences of period p(p(m - 1)) of low correlation are also cons...
On the Poisson sum formula for the analysis of wave radiation and scattering from large finite arrays
Aydın Çivi, Hatice Özlem; Chou, HT (1999-05-01)
Poisson sum formulas have been previously presented and utilized in the literature [1]-[8] for converting a finite element-by-element array field summation into an alternative representation that exhibits improved convergence properties with a view toward more efficiently analyzing wave radiation/scattering from electrically large finite periodic arrays. However, different authors [1]-[6] appear to use two different versions of the Poisson sum formula; one of these explicitly shows the end-point discontinui...
Improved three-way split formulas for binary polynomial multiplication
Cenk, Murat; Hasan, M. Anwar (2011-08-12)
In this paper we deal with 3-way split formulas for binary field multiplication with five recursive multiplications of smaller sizes. We first recall the formula proposed by Bernstein at CRYPTO 2009 and derive the complexity of a parallel multiplier based on this formula. We then propose a new set of 3-way split formulas with five recursive multiplications based on field extension. We evaluate their complexities and provide a comparison.
New bent functions from permutations and linear translators
MESNAGER, sihem; ONGAN, pınar; Özbudak, Ferruh (2017-04-12)
Starting from the secondary construction originally introduced by Carlet ["On Bent and Highly Nonlinear Balanced/Resilient Functions and Their Algebraic Immunities", Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 2006], that we shall call "Carlet` ssecondary construction", Mesnager has showed how one can construct several new primary constructions of bent functions. In particular, she has showed that three tuples of permutations over the finite field F2m such that the inverse of their sum...
Citation Formats
S. Ling and F. Özbudak, “Improved p-ary codes and sequence families from Galois rings,” 2005, vol. 3486, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37462.