Optimal packet scheduling and rate control for video streaming

Download
2007-02-01
Gurses, Eren
Akar, Gözde
AKAR, NAİL
In this paper, we propose a new low-complexity retransmission based optimal video streaming and rate adaptation algorithm. The proposed OSRC (Optimal packet Scheduling and Rate Control) algorithm provides average reward optimal solution to the joint scheduling and rate control problem. The efficacy of the OSRC algorithm is demonstrated against optimal FEC based schemes and results are verified over TFRC (TCP Friendly Rate Control) transport with ns-2 simulations.

Suggestions

Optimal streaming of rate adaptable video
Gürses, Eren; Akar, Gözde; Department of Electrical and Electronics Engineering (2006)
In this study, we study the dynamics of network adaptive video streaming and propose novel algorithms for rate distortion control in video streaming. While doing so, we maintain inter-protocol fairness with TCP (Transmission Control Protocol) that is the dominant transport protocol in the current Internet. The proposed algorithms are retransmission-based and necessitate the use of playback buffers in order to tolerate the extra latency introduced by retransmissions. In the first part, we propose a practical...
Rigorous Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2015-05-17)
We present accurate full-wave analysis of deformed nanowires using a rigorous simulation environment based on the multilevel fast multipole algorithm. Single nanowires as well as their arrays are deformed randomly in order to understand the effects of deformations to scattering characteristics of these structures. Results of hundreds of simulations are considered for statistically meaningful analysis of deformation effects. We show that deformations significantly enhance the forward-scattering abilities of ...
Improving the big bang-big crunch algorithm for optimum design of steel frames
Hasançebi, Oğuzhan (null; 2012-01-01)
This paper presents an improved version of the big bang-big crunch (BB-BC) algorithm namely exponential BB-BC algorithm (EBB-BC) for optimum design of steel frames according to ASD-AISC provisions. It is shown that the standard version of the algorithm sometimes is unable to provide reasonable solutions for problems from discrete design optimization of steel frames. Therefore, by investigating the shortcomings of the BB-BC algorithm, it is aimed to enhance the algorithm for solving complicated steel frame o...
Rigorous Solutions of Large-Scale Scattering Problems Discretized with Hundreds of Millions of Unknowns
Guerel, L.; Ergül, Özgür Salih (2009-09-18)
We present fast and accurate solutions of large-scale scattering problems using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). By employing a hierarchical partitioning strategy, MLFMA can be parallelized efficiently on distributed-memory architectures. This way, it becomes possible to solve very large problems discretized with hundreds of millions of unknowns. Effectiveness of the developed simulation environment is demonstrated on various scattering problems involving canonic...
Implicit monolithic parallel solution algorithm for seismic analysis of dam-reservoir systems
Özmen, Semih; Kurç, Özgür; Department of Civil Engineering (2016)
This research mainly focuses on developing a computationally scalable and efficient solution algorithm that can handle linear dynamic analysis of dam-reservoir interaction problem. Lagrangian fluid finite elements are utilized and compressibility and viscosity of the fluid are taken into consideration during the reservoir modeling. In order to provide computational scalability and efficiency, domain decomposition methods implemented with parallel computing approaches such as Finite Element Tearing and Inter...
Citation Formats
E. Gurses, G. Akar, and N. AKAR, “Optimal packet scheduling and rate control for video streaming,” 2007, vol. 6508, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37582.