Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Real-time edge follow: A real-time path search approach
Date
2007-09-01
Author
Undeger, Cagatay
Polat, Faruk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
Real-time path search is the problem of searching a path from a starting point to a goal point in real-time. In dynamic and partially observable environments, agents need to observe the environment to track changes, explore to learn unknowns, and search suitable routes to reach the goal rapidly. These tasks frequently require real-time search. In this paper, we address the problem of real-time path search for grid-type environments; we propose an effective heuristic method, namely a real-time edge follow alternative reduction method (RTEF-ARM), which makes use of perceptual information in a real-time search. We developed several heuristics powered by the proposed method. Finally, we generated various grids (random-, maze-, and U-type), and compared our proposal with real-time A*, and its extended version real-time A* with n-look-ahead depth; we obtained very significant improvements in the solution quality.
Subject Keywords
Path planning
,
Real-time heuristic search
URI
https://hdl.handle.net/11511/37615
Journal
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS
DOI
https://doi.org/10.1109/tmscc.2007.900663
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Single and multi agent real-time path search in dynamic and partially observable environments
Ündeğer, Çağatay; Polat, Faruk; Department of Computer Engineering (2007)
In this thesis, we address the problem of real-time path search in partially observable grid worlds, and propose two single agent and one multi-agent search algorithm. The first algorithm, Real-Time Edge Follow (RTEF), is capable of detecting the closed directions around the agent by analyzing the nearby obstacles, thus avoiding dead-ends in order to reach a static target more effectively. We compared RTEF with a well-known algorithm, Real-Time A* (RTA*) proposed by Korf, and observed significant improvemen...
Real-Time Moving Target Search
Undeger, Cagatay; Polat, Faruk (2007-11-23)
In this paper, we propose a real-time moving target search algorithm for dynamic and partially observable environments, modeled as grid world. The proposed algorithm, Real-time Moving Target Evaluation Search (MTES), is able to detect the closed directions around the agent, and determine the best direction that avoids the nearby obstacles, leading to a moving target which is assumed to be escaping almost optimally. We compared our proposal with Moving Target Search (NITS) and observed a significant improvem...
Generalizations of multi-agent path finding problem for incremental environments
Semiz, Fatih; Polat, Faruk; Department of Computer Engineering (2022-7-20)
Multi-Agent Path Finding problem (MAPF) is finding a path for multiple agents from a list of starting locations to a list of goal locations in such a way that the agents’ routes do not pass through the same location at the same time. The problem occurs in real-world during the transporting packages in warehouse environments with robots moving on rails, cleaning closed areas with cleaning robots, and protecting areas with multiple robots etc. It is usually sufficient to use discrete maps to express these pro...
RTTES: Real-time search in dynamic environments
Undeger, Cagatay; Polat, Faruk (Springer Science and Business Media LLC, 2007-10-01)
In this paper we propose a real-time search algorithm called Real-Time Target Evaluation Search (RTTES) for the problem of searching a route in grid worlds from a starting point to a static or dynamic target point in real-time. The algorithm makes use of a new effective heuristic method which utilizes environmental information to successfully find solution paths to the target in dynamic and partially observable environments. The method requires analysis of nearby obstacles to determine closed directions and...
Quantum Search in Sets with Prior Knowledge
Çalıkyılmaz, Umut; Turgut, Sadi; Department of Physics (2021-10-7)
Quantum search algorithm revolutionized the field by reducing the complexity significantly for the search problem. However, by not being able to decrease the complexity to logarithmic scales, this algorithm still needs a significant amount of time to solve the search problem for large sets. It is proven that the order of the time required to solve this problem cannot be reduced further but, making an improvement by some constant factor is still possible. This aim has been pursued by some scientists in the p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Undeger and F. Polat, “Real-time edge follow: A real-time path search approach,”
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS
, pp. 860–872, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37615.