Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
3D Modeling of Ripping Process
Date
2008-01-01
Author
Basarir, Hakan
Karpuz, Celal
Tutluoglu, Levent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Due to environmental constraints and limitations on blasting, ripping as a ground loosening and breaking method has become more popular than drilling and blasting method in both mining and civil engineering applications. The best way of estimating the rippability of rocks is to conduct direct ripping runs in the field. However, it is not possible to conduct direct ripping runs in all sites using different dozer types. Therefore, the utilization of numerical modeling of ripping systems becomes unavoidable. A complex ripping system can better be understood with three-dimensional (3D) models rather than two-dimensional models. In this study, 3D distinct element program called 3DEC was used to investigate the ripping process. First, the ripping mechanisms were investigated and then the individual factors that affect the rippability performance of dozers were reviewed. The rippabilities of rocks depend not only on the rock properties, but also machine or dozer properties. Thus, ripper production and rock rippability with D8 type of dozers were also determined by direct ripping runs on different open pit lignite mines within the scope of this research. Production values obtained from numerical modeling were compared with field production values obtained from the case studies. This comparison shows that the model gives consistent and adequate results. Hence, a link has been established between the field results and the 3D models.
Subject Keywords
Soil Science
URI
https://hdl.handle.net/11511/37641
Journal
INTERNATIONAL JOURNAL OF GEOMECHANICS
DOI
https://doi.org/10.1061/(asce)1532-3641(2008)8:1(11)
Collections
Department of Mining Engineering, Article
Suggestions
OpenMETU
Core
Effective Stress and Shear Strength of Moist Uniform Spheres
Toker, Nabi Kartal; Culligan, Patricia J. (Wiley, 2014-05-01)
In continuum soil mechanics, the mechanical behavior of an element of soil is related to the effective stress, which is a measure of the average stress transmitted through the solid matrix in the form of contact stresses. In unsaturated soils, the coexistence of water and air within the soil pore space complicates this concept because the microscopic distribution of each fluid phase in soil pores cannot be known. Because it is thus not possible to physically measure effective stress in unsaturated soils, it...
Numerical modelling of contracted sharp-crested weirs and combined weir and gate systems
Altan Sakarya, Ayşe Burcu; Duru, Aysel (Wiley, 2020-05-01)
Discharge measurement and control structures are widely employed in hydraulic engineering applications. The objective of this study is to numerically investigate the modelling of two different structures, namely sharp-crested weirs as Problem 1 and combined weir and gate systems as Problem 2. The research methodology herein is based on the comparison of results of numerical simulations with experimental data for both problems separately. For the purpose of performing numerical simulations, the Reynolds-aver...
Estimating Drilling Parameters for Diamond Bit Drilling Operations Using Artificial Neural Networks
Akın, Serhat; Karpuz, Celal (American Society of Civil Engineers (ASCE), 2008-01-01)
Diamond bit drilling is one of the most widely used and preferable drilling techniques because of its higher rate of penetration and core recovery in the hardest rocks, the ability to drill in any direction with less deviation, and the ability to drill with greater precision in coring and prospecting drilling. Conventional bit analysis techniques include mathematical methods such as specific energy and formation drillability. In this study, artificial neural network (ANN) analysis as opposed to conventional...
Improvement of expansive soils by using cement kiln dust
Yılmaz, Mehmet Kağan; Çokça, Erdal; Department of Civil Engineering (2014)
Expansive soils are a worldwide problem that poses several challenges for civil engineers. Such soils swell when given an access to water and shrink when they dry out. The most common and economical method for stabilizing these soils is using admixtures that prevent volume changes. In this study, effect of using cement kiln dust (CKD) in reducing the swelling potential was examined. The expansive soil was prepared in the laboratory by mixing kaolinite and bentonite. Cement kiln dust (CKD) was added to the s...
A fuzzy logic based rippability classification system
Basarir, H.; Karpuz, Celal; TUTLUOĞLU, LEVEND (2007-12-12)
Due to the environmental constraints and the limitations on blasting, ripping as a ground loosening and breaking method has become more popular in both mining and civil engineering applications. Because of the technological advances in dozer manufacturing techniques, more powerful dozer types are available today. Thus, the ground, previously classified as non-rippable, has become rippable. As a consequence, a more applicable rippability classification system is needed which considers both equipment properti...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Basarir, C. Karpuz, and L. Tutluoglu, “3D Modeling of Ripping Process,”
INTERNATIONAL JOURNAL OF GEOMECHANICS
, pp. 0–0, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37641.