Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Comparative Study of Surface Integral Equations for Accurate and Efficient Analysis of Plasmonic Structures
Date
2017-06-01
Author
Karaosmanoglu, Bariscan
Yilmaz, Akif
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
0
downloads
Cite This
Surface integral equations, which are commonly used in electromagnetic simulations, have recently been applied to various plasmonic problems, while there is still no complete agreement on which formulations provide accurate and efficient solutions. In this paper, we present the strong material dependences of the conventional formulations, revealing their contradictory performances for different problems. We further explain the numerical problems in the constructed matrix equations, shedding light on the design of alternative formulations that can be more accurate, efficient, and stable than the existing ones. Based on our observations in the limit cases, we present a new formulation, namely, a modified combined-tangential formulation (MCTF), which provides stable solutions of plasmonic problems in wide ranges of negative permittivity values. The favorable properties of MCTF in comparison to other formulations are demonstrated not only on canonical problems but also on realistic cases involving nanowires.
Subject Keywords
Iterative solutions
,
Surface integral equations
,
Plasmonic problems
,
Multilevel fast multipole algorithm (MLFMA)
URI
https://hdl.handle.net/11511/37646
Journal
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
DOI
https://doi.org/10.1109/tap.2017.2696954
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm
Ergül, Özgür Salih (2012-03-01)
Fast and accurate solutions of electromagnetic scattering problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Iterative solutions and accuracy of the results are investigated in detail for diverse geometries, frequencies, and con...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Efficient Multilayer Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-01-01)
We consider efficient iterative solutions of large-scale electromagnetic problems involving metallic objects. For fast iterative solutions, a multilayer scheme using approximate forms of the multilevel fast multipole algorithm is developed. The approach is based on preconditioning each layer with iterative solutions at a lower layer, while the accuracy is changed from the top layer to the bottom layer. As opposed to the conventionally used algebraic preconditioners, the multilayer scheme: 1) does not requir...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karaosmanoglu, A. Yilmaz, and Ö. S. Ergül, “A Comparative Study of Surface Integral Equations for Accurate and Efficient Analysis of Plasmonic Structures,”
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
, pp. 3049–3057, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37646.