Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Download
index.pdf
Date
2009-01-01
Author
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (JMCFIE), requires fewer iterations than other formulations within the context of MLFMA. In addition to its efficiency, JMCFIE is also more accurate than the normal formulations and becomes preferable, especially when the problems cannot be solved easily with the tangential formulations.
Subject Keywords
Dielectrics
,
Iterative solutions
,
Multilevel fast multipole algorithm (MLFMA)
,
Surface integral equations
URI
https://hdl.handle.net/11511/47400
Journal
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
DOI
https://doi.org/10.1109/tap.2008.2009665
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm
Ergül, Özgür Salih (2012-03-01)
Fast and accurate solutions of electromagnetic scattering problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Iterative solutions and accuracy of the results are investigated in detail for diverse geometries, frequencies, and con...
A Comparative Study of Surface Integral Equations for Accurate and Efficient Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2017-06-01)
Surface integral equations, which are commonly used in electromagnetic simulations, have recently been applied to various plasmonic problems, while there is still no complete agreement on which formulations provide accurate and efficient solutions. In this paper, we present the strong material dependences of the conventional formulations, revealing their contradictory performances for different problems. We further explain the numerical problems in the constructed matrix equations, shedding light on the des...
Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations
Ergül, Özgür Salih (2007-11-16)
We present the stabilization of the surface integral equationsfor accurate solutions of scattering problems involvinglow-contrast dielectric objects. Unlike volume formulations,conventional surface formulations fail to provide accurateresults for the scatteredfields when the contrast of theobject is small. Therefore, surface formulations are requiredto be stabilized by extracting the nonradiating parts of theequivalent currents. In addition to previous strategies forthe stabilization, we introduce a n...
Accurate Solutions of Extremely Large Integral-Equation Problems in Computational Electromagnetics
Ergül, Özgür Salih (2013-02-01)
Accurate simulations of real-life electromagnetics problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be achieved easily, even when using the most powerful computers with state-of-the-art technology. However, with the multilevel fast multipole algorithm (MLFMA) and parallel MLFMA, we have been able to obtain full-wave solutions of scattering problems discretized with hundreds of millions of unknow...
Rigorous Solutions of Electromagnetic Problems Involving Hundreds of Millions of Unknowns
Ergül, Özgür Salih (2011-02-01)
Accurate simulations of real-life electromagnetic problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be easily achieved, even when using the most powerful computers with state-of-the-art technology. Hence, many electromagnetic problems in the literature have been solved by resorting to various approximation techniques, without controllable error. In this paper, we present full-wave solutions of sc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül, “Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm,”
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
, pp. 176–187, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47400.