Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The planar hub location problem: a probabilistic clustering approach
Date
2013-12-01
Author
İyigün, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
0
downloads
Cite This
Given the demand between each origin-destination pair on a network, the planar hub location problem is to locate the multiple hubs anywhere on the plane and to assign the traffic to them so as to minimize the total travelling cost. The trips between any two points can be nonstop (no hubs used) or started by visiting any of the hubs. The travel cost between hubs is discounted with a factor. It is assumed that each point can be served by multiple hubs.
Subject Keywords
Management Science and Operations Research
,
General Decision Sciences
URI
https://hdl.handle.net/11511/37663
Journal
ANNALS OF OPERATIONS RESEARCH
DOI
https://doi.org/10.1007/s10479-013-1394-4
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Heuristics for a continuous multi-facility location problem with demand regions
Dinler, Derya; Tural, Mustafa Kemal; İyigün, Cem; Department of Operational Research (2013)
We consider a continuous multi-facility location problem where the demanding entities are regions in the plane instead of points. Each region may consist of a finite or an infinite number of points. The service point of a station can be anywhere in the region that is assigned to it. We do not allow fractional assignments, that is, each region is assigned to exactly one facility. The problem we consider can be stated as follows: given m demand regions in the plane, find the locations of q facilities and allo...
Modeling demand management strategies for evacuations
Tüydeş Yaman, Hediye (Springer Science and Business Media LLC, 2014-06-01)
Evacuations are massive operations that create heavy travel demand on road networks some of which are experiencing major congestions even with regular traffic demand. Congestion in traffic networks during evacuations, can be eased either by supply or demand management actions. This study focuses on modeling demand management strategies of optimal departure time, optimal destination choice and optimal zone evacuation scheduling (also known as staggered evacuation) under a given fixed evacuation time assumpti...
Flow shop-sequencing problem with synchronous transfers and makespan minimization
Soylu, B.; Kirca, Ou; Azizoğlu, Meral (Informa UK Limited, 2007-01-01)
This study considers a permutation flow shop-sequencing problem with synchronous transfers between stations. The objective is to minimize the makespan. It is shown that the problem is strongly NP-hard. A branch-and-bound algorithm together with several lower and upper bounding procedures are developed. The algorithm returns optimal solutions to moderate-sized problem instances in reasonable solution times.
A Heuristic for Obtaining and Initial Solution for the Transportation Problem
Kirca, Ömer; Şatır, Ahmet (JSTOR, 1990-9)
A heuristic for obtaining an initial solution for the transportation problem is presented. Comparison of findings obtained by the new heuristic and Vogel's approximation method (VAM) are tabulated for 480 examples. Superior performance of the new heuristic over VAM is discussed in terms of total costs obtained, number of iterations required to reach the final solution, and CPU time required to solve the problems. Experimental design aspects are also presented.
Heuristic approaches for solid transportation-p-facility location problem
Das, Soumen Kumar; Roy, Sankar Kumar; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
Determining optimum places for the facilities and optimum transportation from existing sites to the facilities belongs to the main problems in supply chain management. Thesolid transportation-p-facility location problem(ST-p-FLP) is an integration between thefacility location problemand thesolid transportation problem(STP). This paper delineates the ST-p-FLP, a generalization of the classical STP in which location ofp-potential facility sites are sought so that the total transportation cost by means of conv...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. İyigün, “The planar hub location problem: a probabilistic clustering approach,”
ANNALS OF OPERATIONS RESEARCH
, pp. 193–207, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37663.