Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Heuristic approaches for solid transportation-p-facility location problem
Date
2020-09-01
Author
Das, Soumen Kumar
Roy, Sankar Kumar
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
99
views
0
downloads
Determining optimum places for the facilities and optimum transportation from existing sites to the facilities belongs to the main problems in supply chain management. Thesolid transportation-p-facility location problem(ST-p-FLP) is an integration between thefacility location problemand thesolid transportation problem(STP). This paper delineates the ST-p-FLP, a generalization of the classical STP in which location ofp-potential facility sites are sought so that the total transportation cost by means of conveyances from existing facility sites to potential facility sites will be minimized. This is one of the most important problems in the transportation systems and the location research areas. Two heuristic approaches are developed to solve such type of problem: a locate-allocate heuristic and an approximate heuristic. Thereafter, the performance of the proposed model and the heuristics are evaluated by an application example, and the obtained results are compared. Moreover, a sensitivity analysis is introduced to investigate the resiliency of the proposed model. Finally, conclusions and an outlook to future research works are provided.
Subject Keywords
Management Science and Operations Research
URI
https://hdl.handle.net/11511/51798
Journal
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH
DOI
https://doi.org/10.1007/s10100-019-00610-7
Collections
Graduate School of Applied Mathematics, Article