Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of implementing satellite observed aerosols into a mesoscale atmosphere model
Date
2011-01-01
Author
Bay, Emine
Yücel, İsmail
Kovacs, Tom
Mccormick, M. Patrick
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
This study investigated the performance of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) in calculating the aerosol forcing on cloud cover, incoming surface solar radiation, and near-surface air temperature via the implementation of aerosol optical depth in the shortwave radiation parameterization. MM5 simulations with and without aerosol data are performed in the periods of 6-7 August 2003 and 19-21 September 2003 during which strong aerosol forcing was observed with Moderate Resolution Imaging Spectroradiometer (MODIS) data in the mid-Atlantic region. Both periods clearly showed that aerosols had a direct negative effect on surface solar radiation through aerosol scattering. For example, every 0.1 change in MODIS aerosol optical thickness (AOT) results in 44 and 59 W m(-2) decreases in surface solar radiation for the first and second periods, respectively. A magnitude of 0.1 increment in MODIS AOT reduces air temperature 0.36 and 0.56 K for the first and second periods, respectively. Comparisons with satellite-derived surface solar radiation retrievals showed that aerosol implementation in MM5 consistently showed better incoming surface solar radiation than that of the non-aerosol case. This helps to reduce uncertainties related to the radiation-cloud-aerosol interaction in numerical weather modelling systems.
Subject Keywords
General Earth and Planetary Sciences
URI
https://hdl.handle.net/11511/37674
Journal
INTERNATIONAL JOURNAL OF REMOTE SENSING
DOI
https://doi.org/10.1080/01431161.2010.502157
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Evaluation of Remotely-Sensed and Model-Based Soil Moisture Products According to Different Soil Type, Vegetation Cover and Climate Regime Using Station-Based Observations over Turkey
Bulut, Burak; Yılmaz, Mustafa Tuğrul; Afshar, Mahdı Hesamı ; Sorman, A. Unal; Yücel, İsmail; Cosh, Michael H.; Simsek, Osman (MDPI AG, 2019-08-01)
This study evaluates the performance of widely-used remotely sensed- and model-based soil moisture products, including: The Advanced Scatterometer (ASCAT), the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the European Space Agency Climate Change Initiative (ESA-CCI), the Antecedent Precipitation Index (API), and the Global Land Data Assimilation System (GLDAS-NOAH). Evaluations are performed between 2008 and 2011 against the calibrated station-based soil moisture observations coll...
Evaluation of SeaWiFS chlorophyll-a in the Black and Mediterranean seas
Sancak, S; Besiktepe, ST; Yılmaz, Ayşen; Lee, M; Frouin, R (Informa UK Limited, 2005-05-20)
The performance of NASA's OC2 and OC4 algorithms to estimate chlorophyll-a concentrations from SeaWiFS radiometric measurements on the global scale was tested in two contrasted bio-optical environments, the Black Sea and the Mediterranean Sea. The in situ bio-optical measurements were made during October 1999 at 25 stations. Comparisons of the in situ measurements with the concurrent SeaWiFS retrievals indicate that the OC2 and OC4 algorithms are not working satisfactorily in both seas. Case 2 waters domina...
THE IMPACT OF TOPOGRAPHY ON ISOTOPES IN PRECIPITATION ACROSS THE CENTRAL ANATOLIAN PLATEAU (TURKEY)
Schemmel, Fabian; Mikes, Tamas; Rojay, Fuat Bora; Mulch, Andreas (American Journal of Science (AJS), 2013-02-01)
Paleoelevation reconstructions of mountain belts and orogenic plateaus based on stable isotope climate and precipitation records benefit greatly from present-day calibrations that relate the fractionation of hydrogen (delta D) and oxygen (delta O-18) isotopes in precipitation to orographic rainfall. Here, we establish a first-order template of delta D and delta O-18 of modern meteoric waters across the Central Anatolian Plateau (CAP) and its bordering Pontic and Taurus Mountains. We identify key regions in ...
Effect of using multiple stream gauging stations on calibration of hydrologic parameters and estimation of hydrograph of ungauged neighboring basin
Akay, Huseyin; Kocyigit, Musteyde Baduna; Yanmaz, Ali Melih (Springer Science and Business Media LLC, 2018-06-01)
In this study, Hydrologic Engineering Center-Hydrologic Modeling System is used to simulate hydrologic processes in a watershed in Western Black Sea Region that frequently experiences flooding. The region is mountainous with steep hill slopes and receives high precipitation throughout the year. There are three stream gauging stations in the basin whose data are available for calibration and validation of hydrologic parameters. Simulations are performed for different scenarios to investigate the effect of us...
Assessment of soil acidification due to a natural gas-fired power plant by using two different approaches
Soyupak, S; Yurteri, C; Mukhallalati, L; Kilic, B; Kayin, S; Onder, K (Informa UK Limited, 1996-01-01)
Potential soil acidification impacts of a proposed natural gas-fired combined cycle power plant were assessed using an integrated approach coupling an atmospheric deposition model with soil acidification quantification. The deposition model was used to estimate the rates of nitrogen oxide (NOx) deposition on the air-soil boundary. The expected changes in the soil column were then predicted by utilizing mechanistic and experimental methods, and the number of years required to reach critical pH values were pr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Bay, İ. Yücel, T. Kovacs, and M. P. Mccormick, “Effects of implementing satellite observed aerosols into a mesoscale atmosphere model,”
INTERNATIONAL JOURNAL OF REMOTE SENSING
, pp. 5505–5525, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37674.