Numerical modeling of visco-elasto-plastic hygro-thermal stresses and the effects of operating conditions on the mechanical degradation of PEFC membranes

2018-08-31
Mehrtash, Mehdi
Tarı, İlker
YEŞİLYURT, SERHAT
Durability of membranes is one of the concerns for widespread commercialization of polymer electrolyte fuel cells. Effects of membrane swelling on the durability pose important challenges for the fabrication of the catalyst-coated membrane. This study provides insight into vulnerable locations of the membrane under hygrothermal loading, mechanical loading due to clamping and realistic conditions where a combination of both of these loadings are imposed. With a half rib-channel model, we simulate a polymer electrolyte fuel cell that operates under varying loads and clamping pressure. Model considers anisotropic diffusion in the gas diffusion layer as well as complex interactions of water transport dynamics between gas diffusion layers and the membrane. Mechanical responses of the membrane subject to conjugate hygro-thermo-mechanical loadings during typical scenarios of fuel cell operation reveal the effects of operating parameters as well as individual contributing factors on the development of local stresses in the membrane.
JOURNAL OF POWER SOURCES

Suggestions

Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Numerical Investigation of thermal management of Solid Oxide Fuel Cells by flow arrangement
Şen, Fırat; Tarı, İlker (null; 2015-05-29)
SolidOxide Fuel Cells (SOFCs) are electrochemical cells working at high temperatures. One of the important problems in planar SOFC designs is the non-uniformtemperature distribution on the plane of the cell due to the waste heat produced by electrochemical reactions. Another important problem of SOFCs is the low fuel utilization ratio. In this study, the effect of the flow arrangement on the temperature distribution, which causes the thermal stresses, and the met...
Novel structured electrolytes for solid oxide fuel cells
TİMURKUTLUK, BORA; Celik, Selahattin; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel (2012-09-01)
Novel grate type electrolytes are designed and fabricated to improve the cell performance and to lower the operation temperature of intermediate temperature electrolyte supported solid oxide fuel cells based on scandium and ceria stabilized zirconia by partly reducing the electrolyte thickness. The characteristics of three different small size cells (11.62 cm(2) active area) having various electrolyte designs are investigated. A standard electrolyte supported cell is also produced as a base case for compari...
Modeling and control of a PEM fuel cell system
Saygılı, Yasemin; Kıncal, Serkan; Eroğlu, İnci; Department of Chemical Engineering (2013)
Polymer electrolyte membrane (PEM) fuel cells attract an extensive interest due to their advantageous properties. To compete with the conventional power generators fuel cell systems should ensure safe and efficient operations at any time. To achieve satisfactory operations, all the process requirements should be determined and implemented within the operational constraints. Thermal management, reactant supply, water management and power management are some of the main issues for which proper and sufficient ...
Investigation of temperature profile in high temperature PEM fuel cell
Çağlayan, Dilara Gülçin; Eroğlu, İnci; Devrim, Yılser; Department of Chemical Engineering (2016)
High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) are promising alternative energy sources for the future. As an advantageous tool in the design of a system, modeling requires less time compared to the experiments as well as its low cost. This study includes both isothermal and non-isothermal three-dimensional mathematical models for a HT-PEMFC having an active area of 25 cm2. Governing equations are solved by using Comsol Multiphysics 5.0 “Batteries & Fuel Cells” module, which is a commer...
Citation Formats
M. Mehrtash, İ. Tarı, and S. YEŞİLYURT, “Numerical modeling of visco-elasto-plastic hygro-thermal stresses and the effects of operating conditions on the mechanical degradation of PEFC membranes,” JOURNAL OF POWER SOURCES, pp. 164–174, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37727.