Undrained stability of residual soil in karst

2008-12-01
AKTÜRK, ÖZGÜR
Drumm, Eric C.
Tutluoǧlu, Levent
Akgün, Haluk
Human activity on the karst landscape can result in subsidence or collapse, particularly when the thickness of the residual soil layer is reduced due to excavation. When collapse occurs beneath or adjacent to structures or highways, it may result in extensive damage. The stability of the residual soils that overlie solution cavities in limestone is often a concern during the construction, and a simple means to evaluate the stability of these residual soils may be valuable. In this study, the undrained stability of residual soil in karst terrain was investigated by the Finite Element Method (FEM). The results are summarized in a design chart in terms of dimensionless stability numbers and the geometry of a potential soil void above a cavity in the underlying limestone. The use of the stability chart for short-term stability is demonstrated by an example. Such stability numbers can be useful to estimate the stability of a given site based on the expected thickness of the soil overburden and the likely range of anticipated soil void diameters.

Suggestions

Stability Charts for the Collapse of Residual Soil in Karst
DRUMM, Eric C.; Akturk, Oezguer; Akgün, Haluk; Tutluoğlu, Levend (American Society of Civil Engineers (ASCE), 2009-07-01)
Collapse of the residual soil over bedrock cavities often occurs during construction in karst terrain, particularly when the thickness of the residuum is reduced during excavation. Even if an estimate of the strength of the residual soil is known, uncertainty with respect to the size/geometry of the subterranean voids makes a detailed analysis difficult, and straightforward methods to check the stability are needed. In this study, numerical analyses were performed to develop a stability chart expressed in t...
Effects of fly ash and desulphogypsum on the geotechnical properties of çayırhan soil
Baytar, Ali Özgür; Çokça, Erdal; Department of Civil Engineering (2005)
Collapse in soils occur when a partially unstable, partially saturated open fabric under high enough stress causing a metastable structure with large soil suction, or in the presence of a bonding or cementing agent, is allowed to free access to additional water. Such excess water reduces soil suction and weakens or destroys the bonding, this causing shear failure at the interaggregate or intergranular contacts, consequently, the soil collapses. In this study, the collapsible soils found in the Çayirhan Ther...
Dynamic response analysis of the machine foundations on a nonhomogeneous soil layer
Aşık, Mehmet Zülfü (1999-01-01)
Real modulus of elasticity of the soil usually increases with the depth of the soil due to the increase in overburden pressure. Therefore, incorporation of the effect of the soil inhomogeneity in the formulation to obtain the response of the machine foundations is an important and a necessary step. In this paper, equations that govern the dynamic behavior of the machine foundations and consider the inhomogeneity of the elastic foundation, particularly for Gibson type soil are derived by using variational pr...
Assessment of cut slope stability in western Black Sea Region (Turkey)
Özköse, Merve; Topal, Tamer; Department of Geological Engineering (2019)
Cut slopes are intensely prone to weathering in the cause of excavation effects. Weathering effects can reduce strength of rocks and results in instabilities in the long run. By the reasons of rocks containing joints, fractures, faults, bedding planes and pore spaces, they are likely to be weathered because of wetting-drying cycles, climate changes, and chemical action of solutions absorbed. This study is mainly concerned with the slope stability analysis for sixteen permanent cut slopes that are composed o...
Assessment of soil structure earthquake interaction induced soil liquefaction triggering
Unutmaz, Berna; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Although there exist some consensus regarding seismic soil liquefaction assessment of free field soil sites, estimating the liquefaction triggering potential beneath building foundations still stays as a controversial and difficult issue. Assessing liquefaction triggering potential under building foundations requires the estimation of cyclic and static stress state of the soil medium. For the purpose of assessing the effects of the presence of a structure three-dimensional, finite difference-based total str...
Citation Formats
Ö. AKTÜRK, E. C. Drumm, L. Tutluoǧlu, and H. Akgün, “Undrained stability of residual soil in karst,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37741.