Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Robust Priority Assignments for Extending Existing Controller Area Network Applications
Date
2014-02-01
Author
Schmidt, Klaus Verner
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
The usage of the controller area network (CAN) as an in-vehicle communication bus requires finding feasible and robust priority orders such that each message transmitted on the bus meets its specified deadline and tolerates potential transmission errors. Although such priority orders can be determined by available algorithms whenever they exist, it is always assumed that a CAN priority order is computed from scratch. In practical applications, it is frequently necessary to extend an existing message set by new messages. In this case, a feasible priority order that retains the standardized IDs of the existing messages and assigns suitable priorities to the new messages needs to be found. This paper proposes an algorithm for the computation of robust priority orders that solves the stated problem of extending existing message sets. First, bounds for the priorities of new messages are determined and then the most robust priority order that keeps the IDs of the existing messages is computed. The obtained algorithms are proved to yield correct results and are illustrated by detailed scheduling examples.
Subject Keywords
Control and Systems Engineering
,
Electrical and Electronic Engineering
,
Information Systems
,
Computer Science Applications
URI
https://hdl.handle.net/11511/37775
Journal
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
DOI
https://doi.org/10.1109/tii.2013.2266636
Collections
Department of Electrical and Electronics Engineering, Article