Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Induced Current Magnetic Resonance Electrical Conductivity Imaging With Oscillating Gradients
Date
2018-07-01
Author
Eroglu, Hasan H.
Sadighi, Mehdi
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
In this paper, induced current magnetic resonance electrical impedance tomography (ICMREIT) by means of current induction due to time-varying gradient fields of magnetic resonance imaging (MRI) systems is proposed. Eddy current and secondary magnetic flux density distributions are calculated for a numerical model composed of a z-gradient coil and a cylindrical conductor. An MRI pulse sequence is developed for the experimental evaluation of ICMREIT on a 3T MRI scanner. A relationship between the secondary magnetic flux density and the low-frequency (LF) MR phase is formulated. Characteristics of the LF phase, the eddy current, and the reconstructed conductivity distributions based on the simulated and the physical measurements are in agreement. Geometric shifts, which may contaminate the LF phase measurements, are not observed in the MR magnitude images. Low sensitivity of the LF phase measurements is a major limitation of ICMREIT towards clinical applications. The reconstructed conductivity images are rough estimates of true conductivity distribution of the experimental phantoms. Although the experimental results show that ICMREIT is safe and potentially applicable, its measurement sensitivity and reconstruction accuracy need to be optimized in order to improve the technique towards clinical applications.
Subject Keywords
Electrical impedance tomography
,
Eddy current
,
Gradient coil
,
Induced current
,
Image reconstruction
,
Low frequency phase
,
Magnetic resonance imaging
URI
https://hdl.handle.net/11511/37780
Journal
IEEE TRANSACTIONS ON MEDICAL IMAGING
DOI
https://doi.org/10.1109/tmi.2018.2795718
Collections
Department of Electrical and Electronics Engineering, Article