Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Enhancing induced current magnetic resonance electrical impedance tomography ICMREIT image reconstruction
Date
2016-02-15
Author
NAJI, NASHWAN
EROĞLU, HASAN HÜSEYİN
SÜMSER, KEMAL
SADIGHI, MEHDI
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
Induced Current Magnetic Resonance Electrical Impedance Tomography (ICMREIT) is an emerging imaging methodology that utilizes Magnetic Resonance Imaging (MRI) techniques to visualize the electrical conductivity as a new contrast. In ICMREIT, by fast switching of gradient fields of Magnetic Resonance (MR) system eddy currents are induced in the imaging volume. The secondary magnetic field generated by the induced eddy currents can be extracted from the MR phase images. Image reconstruction algorithms then use this secondary field map to recover the conductivity distribution. In this paper, a novel approach is proposed to enhance the quality of the reconstructed conductivity maps, from the perspectives of edge preservation and noise sensitivity. Simulated measurements are used to demonstrate the improvements introduced by the proposed method.
Subject Keywords
Impedance imaging
,
MRI
,
ICMREIT
,
Conductivity reconstruction
URI
https://hdl.handle.net/11511/41207
DOI
https://doi.org/10.2316/p.2016.832-034
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Induced Current Magnetic Resonance Electrical Conductivity Imaging With Oscillating Gradients
Eroglu, Hasan H.; Sadighi, Mehdi; Eyüboğlu, Behçet Murat (2018-07-01)
In this paper, induced current magnetic resonance electrical impedance tomography (ICMREIT) by means of current induction due to time-varying gradient fields of magnetic resonance imaging (MRI) systems is proposed. Eddy current and secondary magnetic flux density distributions are calculated for a numerical model composed of a z-gradient coil and a cylindrical conductor. An MRI pulse sequence is developed for the experimental evaluation of ICMREIT on a 3T MRI scanner. A relationship between the secondary ma...
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging technique which combines boundary potential measurements of electrical impedance tomography (EIT) and internal current density distribution obtained from magnetic resonance imaging (MRI) to produce conductivity images having high spatial resolution and accuracy. In this study, a novel method of reconstructing images of anisotropic conductivity tensor distribution inside an electrically conducting subject is proposed for MREI...
Regional Image Reconstruction with Optimum Currents for MREIT - Evaluation on Shepp-Logan Conductivity Phantom
Eyüboğlu, Behçet Murat; Altunel, Haluk (2008-11-27)
In this study, an image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT) is proposed to achieve maximum benefit of optimum current injection patterns. By doing so, considerable reduction in probing current amplitude could be possible. In the proposed algorithm, field of view (FOV) is divided into a number of segments. Image of each segment is reconstructed separately, based on measurements obtained using the best (optimum) current patterns, which maximize distinguishab...
Induced Current Magnetic Resonance Electrical Impedance Tomography with z-Gradient Coil
Eroglu, Hasan H.; Eyuboglu, Murat (2014-08-30)
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a medical imaging method that provides images of electrical conductivity at low frequencies (0-1 kHz). In MREIT, electrical current is applied to the body via surface electrodes and corresponding magnetic flux density is measured by means of Magnetic Resonance (MR) phase imaging techniques. By utilizing the magnetic flux density measurements and surface potential measurements images of true conductivity distribution can be reconstructed. In order...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. NAJI, H. H. EROĞLU, K. SÜMSER, M. SADIGHI, and B. M. Eyüboğlu, “Enhancing induced current magnetic resonance electrical impedance tomography ICMREIT image reconstruction,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41207.