A microslip friction model with normal load variation induced by normal motion

2007-11-01
Ciğeroğlu, Ender
Menq, Chia-Hsiang
A two-dimensional microslip friction model with normal load variation induced by normal motion is presented in this paper. The model is a distributed parameter model, which characterizes the stick-slip-separation of the contact interface and determines the resulting friction force, including its time variance and spatial distribution, between two elastic structures. When the relative motion is simple harmonic motion, the stick-slip-separation transition angles associated with any point in the contact area can be analytically determined within a cycle of motion. In addition, if the relative motion is given, stick-slip-separation transition boundaries inside the contact area and their time variances can be determined. Along with an iterative multi-mode solution approach utilizing harmonic balance method (HBM), the developed model can be employed to determine the forced response of frictionally constrained structures. In the approach, the forced response is constructed in terms of the free mode shapes of the structure; consequently, it can be determined at any excitation frequency and for any type of normal load distribution. Two examples, a one-dimensional beam like damper and a more realistic blade to ground damper, are employed to illustrate the predictive abilities of the developed model. It is shown that while employing a single mode model, transition boundaries for the beam like damper agrees with the results given in the literature, the developed method identifies the phase difference along the slip to stick transition boundary when a multi-mode model is employed. Moreover, while partial slip is illustrated in the two examples, typical softening and hardening effects, due to separation of the contact surface, are also predicted for the blade to ground damper.
NONLINEAR DYNAMICS

Suggestions

One-dimensional dynamic microslip friction model
Ciğeroğlu, Ender; Menq, Ch (Elsevier BV, 2006-05-09)
A one-dimensional dynamic microslip friction model, including the damper inertia, is presented in this paper. An analytical approach is developed to obtain the steady-state solution of the resulting nonlinear partial differential equations when subjected to harmonic excitation. In the proposed approach, according to the excitation frequency, a single mode of the system is considered in the steady-state solution for simplicity; consequently, phase difference among spatially distributed points is neglected. T...
A Mechanistic Model for Predicting Frictional Pressure Losses for Newtonian Fluids in Concentric Annulus
SORGUN, MEHMET; Ozbayoglu, M. E. (Informa UK Limited, 2010-01-01)
A mathematical model is introduced estimating the frictional pressure losses of Newtonian fluids flowing through a concentric annulus. A computer code is developed for the proposed model. Also, extensive experiments with water have been conducted at Middle East Technical University, Petroleum and Natural Gas Engineering Department Flow Loop and recorded pressure drop within the test section for various flow rates. The performance of the proposed model is compared with computational fluid dynamics (CFD) soft...
A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics
Özgüven, Hasan Nevzat (Elsevier BV, 1991-3)
A six-degree-of-freedom non-linear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the non-linear model developed several factors such as time varying mesh stiffness an...
A New modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoğlu, Erhan; Özgüven, Hasan Nevzat; Ciğeroğlu, Ender; Department of Mechanical Engineering (2017)
In this thesis, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the ...
An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging
Akahn-Acar, Z; Gençer, Nevzat Güneri (IOP Publishing, 2004-11-07)
The forward problem of electromagnetic source imaging has two components: a numerical model to solve the related integral equations and a model of the head geometry. This study is on the boundary element method (BEM) implementation for numerical solutions and realistic head modelling. The use of second-order (quadratic) isoparametric elements and the recursive integration technique increase the accuracy in the solutions. Two new formulations are developed for the calculation of the transfer matrices to obta...
Citation Formats
E. Ciğeroğlu and C.-H. Menq, “A microslip friction model with normal load variation induced by normal motion,” NONLINEAR DYNAMICS, pp. 609–626, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37813.