Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells
Date
2007-09-01
Author
Karabulut, Ibrahim
Atav, Uelfet
Safak, Haluk
Tomak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
In this study, a theoretical investigation of intersubband nonlinear optical rectification in Alx1Ga1-x1As/ GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells is presented. The electronic states in the asymmetric rectangular quantum well are described within the framework of the envelope function approach including the effects of band nonparabolicity and the effective mass mismatch. The nonlinear optical rectification is calculated using the density matrix formalism. It is found that the nonlinear optical rectification in the asymmetric rectangular quantum well depends sensitively on the parameters such as the width and the asymmetry of the potential well. The adjustable parameters allow for tuning of the asymmetric rectangular quantum well system to the desired wavelength while retaining a large optical rectification coefficient. This gives a new degree of freedom in various device applications based on nonlinear optical properties. Band nonparabolicity is found to significantly influence both electronic states and nonlinear optical rectification. Moreover the resulting optical rectification coefficient is much larger than the ones for bulk GaAs and some other theoretical studies in literature. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/37843
Journal
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
DOI
https://doi.org/10.1002/pssb.200642565
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Nonlinear intersubband optical absorption of Si delta-doped GaAs under an electric field
Yildirim, Hasan; Tomak, Mehmet (Wiley, 2006-10-01)
We study the nonlinear intersubband optical absorption of a single Si delta-doped GaAs sheet placed in the middle of a GaAs quantum well and subjected to an electric field. The Schrodinger and Poisson equations are solved self-consistently for various electric field strengths. The self-consistent solutions provide us with the correct confining potential, the wave functions, the corresponding subband energies and the subband occupations. The nonlinear optical intersubband absorption spectra are discussed wit...
Electronic structure of a many-electron spherical quantum dot with an impurity
Sahin, M; Tomak, Mehmet (American Physical Society (APS), 2005-09-01)
We investigate the electronic structure of a many-electron spherical quantum dot with and without hydrogenic impurity. The number of electrons is taken as N=18. The density functional theory is used within local density approximation. Total energy, chemical potential, addition energy spectra, and the shell structure are determined and the results obtained are compared for cases with and without impurity. It is observed that the capacitive energy with the impurity increases in the 1s shell with respect to th...
ELECTRON POLARIZATION IN QUANTUM-WELLS WITH UNIFORM ELECTRIC-FIELD
ILAIWI, KF; Tomak, Mehmet (Wiley, 1991-08-01)
The polarization of a quantum electron confined in square, parabolic, and triangular quantum wells is calculated numerically. The aim of the present calculations is to compare the results for various geometries.
Theoretical prediction of bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys
SUER, Sila; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (Elsevier BV, 2009-03-01)
The bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys has been evaluated via theoretical modeling and computer simulation studies based on a combination of electronic theory of alloys in the pseudopotential approximation and the statistical thermodynamical theory of liquid alloys The. magnitude of atomic ordering energies, calculated by means of the electronic theory of alloys in the pseudopotential approximation, was subsequently used for calculation of the key thermodynamic parameters...
Unified theory of linear instability of anisotropic surfaces and interfaces under capillary, electrostatic, and elastostatic forces: The regrowth of epitaxial amorphous silicon
Ogurtani, Tarik Omer (American Physical Society (APS), 2006-10-01)
The first-order unified linear instability analysis (LISA) of the governing equation for the evolution of surfaces and interfaces under capillary, electromigration (EM), and elastostatic forces is developed. A formal treatment of the thermomigration (Soret effect) driven by the nonuniform temperature distribution caused by exothermic phase transformation (growth) at the surface and interfacial layers is presented and its apparent influence on the capillary force in connection with the stability is also esta...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Karabulut, U. Atav, H. Safak, and M. Tomak, “Theoretical investigation of intersubband nonlinear optical rectification in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum wells,”
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
, pp. 3313–3324, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37843.